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Block 19, Continued
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Project One. Prior work in our laboratory showed that a
percept of global coherent motion can be produced from the
combination of many different, localized motion vectors. Now,
using random-dot cinematograms, we established that hysteresis
is strongly associated with such percepts. D.W. Williams, G.
///Phillips afid R. Sekuler showed that the characteristics of the
. hysteresis are relatively robust with respect to changes in
dot density, display area and location. Changing the display's
directional content, however, 4id alter the hysteresils protile
+n a manner that is consistent with a model incorporating
cooperative interactions among direction-selective motion
mechanisms. These results lend significant support to a view
of motion processing in which cooperative interactions play a
prominent role. ,
I Pl R e A
Project Two. A second major project during this pcriod
followed-up our previous finding that praCtice seemed to
produce direction-selective improvement in obrervers' ability
to discriminate between highly similar directions of motion.
Kosnik, Fikre and Sekuler clarified the basis for this
improvement by recording ar observers eye movements while they
tried to discriminate between slightly different directions of
target motion. We found that observers did not need to track
the moving target in order to learn the discrimination. These
results suggest that practice's influence on the
discrimination of motion's direction is perceptual rather than
sensori-motor in character.

. Project Three. S. Watamaniuk, R. Sekuler and D.W. Williams
T Vcreated random-dot cinematograms in which each dot's
successive movements were independently drawn from a Gaussian
distribution of directions of some characteristic bandwidth.
As established earlier, such displays, comprising many
different, spatially intermingled local motion vectors, can
produce a percept of global coherent motion in a single
direction.>Using pairs of cinematograms,direction
discrimination of global motion was measured under various
conditions of direction distribution bandwidth, exposure
duration, and constancy of each dot's path. A line-element
model gave an excellent account of the results: i) over a
considerable range, discrimination was unaffected by the
Cinematogram's direction distribution bandwidth; ii) only for
the briefest presentations did changes in duration have an
effect; iii) so long as the overall directional content of the
cinematogram remained unchanged, the constancy or randomness
of individual dots' paths did not affect discrimination.
Finally, the line-element model continued to give a good
account of the results when we made additional measurements
with uniform rather than Gaussian distributions of directions.

Project Four. This project extended previous work on the
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perception of motion direction and speed to an important
related case, perception of change in velocity. E. Dzhafarov
and R. Sekuler set out to identify the information that
controlled speeded response to motion onset or change in
motion. Observers were required to react to the change in
movement of a random-dot field whose velocity switched
abruptly from Vy; to V;. Changes in velocity were created by

either shifting the speed, with direction constant, or by
reversing direction, with speed constanlL. Mean reaction times
and their standard deviations were decreasing functions of the
difference |V;-V,| and increasing function of the initial

speed, |V,l. The results are quantitatively accounted for vy a

modification of the Local Dispersion model that Dzhafarov and
J. Allik proposed for motion detectability. In our
modification, detection of change of velocity from Vyj to V

is treated as structurally equivalent to the detection of
onset of a motion whose velocity is [V;-V,|. We have found

that the Local Dispersion model can be realized by the mass
activation of network of simple, bilocal correlators, like
those proposed by J. Koenderink.

Project Five. M. Nawrot and R. Sekuler used random-dot
cinematograms to examine how motion within one region of space
influences the motion seen in another, neighboring region. The
cinematograms were spatially heterogeneous, comprising
alternating strips within which dots i)tended to move in one
direction, or ii)moved about randomly (dynamic noise). When
the alternating strips were narrow, motion in one direction
induced a similar direction of illusory motion in the
adjoining dynamic noise (assimilation); when alternating
strips were wide, motion tended to induce an illusory opposed
motion in the dynamic noise (contrast). Since it exhibits
hysteresis, this illusory motion probably results from a
network of spatially distributed, cooperative processes. The
shift from assimilation to contrast, as the cinematogram's
strips increase in size, suggests that facilatory and
inhibitory influences of the network extend over different
distances. To account for these results, required only a small
addition to the model proposed earlier in this reporting
period by Williams, Sekuler, and Phillips.

Project Six. D.W. Williams and G. Phillips extended our
earlier work on random-dot cinematograms to the domain of
three-dimensional structure from motion. It's been long known
that the human visual system can recover the correct three-
dimensional structure of moving objects solely from the
relative changes in the two-dimensional retinal projection.
The basis for this ability is unclear since infinitely many
combinations of three- dimensional structure and motion can
project to the same two-dimensional image. Using a stochastic
random-dot cinematogram, Williams and Phillips demonstrated




Block 19, Continued

that the recovery of structure from motion does not depend
upon the details of the spatio-temporal relations among

elements of the image, but rather upon the overall directional

content of the motion in the image. Further, the three-
dimensional percept obtained with the random-dot stimulus

exhibits hysteresis behavior. Changing the directional centent

of the stimulus altered the hysteresis profile in manner
consistent with the Williams et al. model (developed earlier
in this period) incorporating cooperative interactions among
direction-selective mechanisms. In addition, the results
strongly challenge widely-held views of the recovery of
structure from motion, including models that depend upon
constraints such as rigidity or incremental rigidity.

Project Seven. As an ancillary to the experimental and
theoretical work of the Projects One through Six, R. Sekuler
organized a session on motion perception at the Badenweiler
(West Germany) Conference on the physiological underpinnings
of perception. He subsequently had sole responsibility for
preparing a written version of that sescion. For the sake of
completeness, that written version, which will appear as a
chapter in a book to be published this year, 1s included in
the report.
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Project One:

Cooperative phenomena in the
perception of motion direction
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INTRODUCTION

A collection of 1localized motion vectors can produce a
percept of global coherent motion along a single direction, even
though the directional range of the individual motion vectors is
quite broad.1 Chang and Julesz2 have suggested that this
coherent motion percept may reflect an underlying cooperative
process. In general, a cooperative system consists of local
elements that interact with each other, thereby generating global
behavior that would not occur were the elements isolated from one
"another. One signature of a cooperative system, hysteresis, is
a form of memory in which a system, having reached a stable
state, shows resistance to further change. A consequence of such
behavior is that the system's response depends upon the history

of stimulation.

The first evidence of a cooperative phenomenon in the visual

3 These authors

system was that of binocular neural hysteresis.
found that, while it was necessary to bring a pair of random dot
stereograms to within 6' wvisual angle of each other for
stereoscopic fusion to occur, it was possible to pull the pair
apart by as much as 2° before fusion was lost. Once fusion was

lost, the stereo pair had to be returned to a disparity of 6' for

fusion to be reestablished. The amount of disparity required to

e,




fuse or split apart the two stereograms thus depended upon the
initial perceptual condition and the direction of the disparity

change.

In this paper, we seek to strengthen a cooperative
interpretation of motion perception by looking for evidence of
hysteresis in the perception of motion direction using random-dot
cinematograms. In our cinematograms, eacﬁ dot takes an indepen-
dent, two-dimensional random walk of constant step size.
Specifically, each dot's direction of displacement from one frame
to the next is chosen randomly from a uniform distribution of
directions. The percept that results depends upon the range of
this uniform distribution.1 For a range of-360°, only the local
random motion of the individual dots is evident. For a range of
180° or 1less, however, the percept is that of global coherent
motion along the direction of the mean of the distribution,
although the individual perturbations of the dots are still

evident.

If this percept of global coherent motion is a result of
cooperative processing, one might then expect the percept to
exhibit hysteresis behavior. That is, by gradually changing the
directional content of the stimulus between the two extremes of a
uniform distribution with range 180° or less and a uniform
distribution with range 360°, one can measure the transition

points marking the change from global coherent motion to local
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random motion and vice versa. The results would be indicative of
hysteresis if the directional content of the stimulus for which
these transitions occur depended upon whether the perceptual
change was from local to global motion or from global to local

motion.

Our experimental results confirm the existence of hysteresis
for the global coherent motion percept. Furthermore, we have
found it possible to account for this hysteresis by cooperative,
nonlinear excitatory and inhibitory interactions among direction-
selective mechanisms for motion. Other models incorporating such
cooperative interactions have been successful in describing

binccular stereopsis.?™?

METHODS

Our stimuli, dynamic random~dot cinematograms, were
generated by a PDP 11/34 computer that passed values through a
digital-to-analog converter for display on a Hewlett Packard
1321A X-Y display (P31 phosphor). A "wrap-around" scheme caused
dots that were displaced beyond the boundary of the display to
reappear at the opposite side of the display. A cardboard mask
restricted the visible pattern to a circular region with a
diameter of 16°. 1In the absence of a fixation point, observers
were instructed to maintain their fixation at the center of the

screen; viewing was monocular, with the other eye occluded by an




opague 2=ye patch.

A detailed discussion of the spatial and temporal
parameters of the display can be found in Williams and Sekuler.1
However, to summarize briefly: the display was composed of 512
dots, each measuring 0.1° in diameter with a spatial density of
approximately 1.6 dots/degz. From one display frame to the next,
each dot was displaced by 0.9°. The frame duration =-- the time

required to present all the dots once -~ was 9.0 msecs, with an

interframe interval of 95.0 msecs.

The display itself provided the only luminance in the room
and observers adapted to the light level of a blank screen for
five minutes before starting an experimental session. At the
beginning of each session, the threshold luminance for a field of
stationary dots was established using a wvon Bekesy tracking

10

procedure. Thereafter, the cinematograms were presented at

twice this threshold luminance.

Each dot in the display took a two-dimensional random walk
of constant step size, drawing its direction of movement randomly
from a uniform distribution of directions. As a result, a dot's
direction of movement was independent not only of the
displacements of the other dots in the field but also of its own
prior displacements. Such a stimulus can generate a percept of

global motion, depending upon the range of the underlying

4




directional distribution. wWwhen the range of the distribution
extends over a full 3600, *he percept is that of only localized
random motion, whereas if the distribution extends over a much
smaller range of 180° or less, the percept 1is that of global
coherent motion along the direction of the mean - upwards in our
case.1 Because of the percept associated with each, the 360°
distribution is referred to as the "noise" stimulus, and the

1800, or smaller, distribution as the "signal",.

During an experimental session two modes of presentation
were randomly intermixed. In one mode, all dots initially chose
their directions of movement from the signal distribution,
corresponding to an 1initial percept of global coherent motion
along the upward direction. After a random period of time
lasting up to 12 seconds, the proportion of dots choosing their
direction from the signal distribution slowly decreased by two
dots per frame; in other words, the proportion of dots choosing
from the noise distribution increased by two dots per frame. The
observers were asked to report, by means of a response switch,
when the field of dots first appeared to exhibit only local
random motion, having previously exhibited global upward motion.
Following this response, which was recorded by the computer, the
proportion of signal continued to decrease for a random time up
to 6 seconds. At this point, the proportion of signal now
increased by two dots per frame until the observer reported that

the percept of global coherent motion had been restored. This




second transition was recorded and the trial was terminated. The
two random intervals that were incorporated into each trial
ensured that the observer could not use temporal cues in deciding
when a transition occurred. Also, the rate of change 1in the
signal/noise proportion (i.e., 2 dots per frame) was chosen so
that the stimulus duration was not too long nor the response

resolution too coarse.

In order to make the stimulus more stochastic, every dot on
each frame was permitted to choose its direction of motion from
either the signal or noise distribution, irrespective of which
distribution it had chosen from on previous frames. In
particular, a dot had a probability egqual to the proportion of
signal dots of choosing its direction of motion from the signal
distribution and a probability equal to the proportion of noise

of choosing from the noise distribution.

In the other mode of presentation, the trial structure was
the same except that the initial stimulus condition was that of
all noise, with the first and second perceptual transitions going

from local random to global coherent motion and back again.

We have chosen to parameterize a transition by the
proportion of dots choosing their direction of motion from the
signal distribution at the transition. 1In a single experimental

session, 20 measurements of the signal proportion were made at

————
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each of the two perceptual transitions. A complete data set
typically comprised the results obtained over 5 sessions. Data

from two naive observers are reported.

RESULTS

The results for the two observers are shown in Figure 1 for
the case in which the range of the signal distribution was 90°
(i.e., +45° to -45° about the vertical). The two possible motion
percepts, "global upward flow" and "local random motion", are
shown versus the proportion of dots choosing their direction of
motion from the signal distribution. In each panel of the
figure, the solid circle and associated error bar indicate the
mean and standard deviation of the measurements of the signal
proportion for the transition from local random motion to global
upward flow. The open circle represents the data for the
opposite transition from global upward flow to local random
motion. We shall refer to the perceptual transition from local
random motion to global upward flow as the ‘'global’' transition
and the transition in the opposite direction as the 'local’
transition. For each observer these respective transition points

are significantly different at the 5% level.

The arrows and solid 1lines schematically represent changes
in the perceptual state as the proportion of signal dots is

either increased or decreased. As indicated by the lower path in




each panel, the percept of only local random motion is unchanged
as the proportion of signal is increased, until this proportion
reaches the value shown at G, at which point a ‘'global’
transition occurs. The global percept persists for all larger
values of the signal proportion. Conversely, the upper path
indicates that in order to lose the global percept it is
necessary to decrease the proportion of signal to the value at L,
below which the local percept then prevails. The criterion for
the existence of hy;teresis is that the proportion of signal at
point L must be less than that at point G. The results for both
observers obviously satisfy this criterion. 1t should be noted
that the hysteresis profile is shown as square-cornered for
schematic purposes. Observers did comment, however, upon the

abruptness of the perceptual transitions.

At this point, we sought to firmly establish the role of
stimulus history in the observed hysteresis. To do so, it was
necessary to rule out some other potential explanations. It is
unlikely that the hysteresis simply reflects a response delay due
to reaction time, since the mean time between the global and
local transitions is 8.6 sec for observer JF and 8.9 sec for TKD-
- more than an order of magnitude greater than typical reaction
times. Another potential explanation, the motion aftereffect,
would actually tend to diminish the width of the hysteresis
profile, since it would 1likely hasten, and not retard, the

perceptual transition from upward flow to local,random motion.

» —ear



As a consequence, it is possible that the hysteresis may be even
more robust than we have observed. Lastly, our results might be
complicated by eye movements. Because of the stochastic nature
of the stimulus, it would be difficult to track individual dots:
however, eye movements could be entrained to the upward flow. To

examine this possibility we repeated the experiments with a

fixation dot in the center of the screen. Eye movement
recordings obtained by Kosnik et al.11 indicate that the

directions of eye movements are not correlated with the direction
of movement in random dot stimuli if a stationary fixation dot is
provided. Results for both observers, obtained with and without
a fixation dot, are tabulated in Table 1. 1In order to search for
statistically significant differences dependent upon the presence
of the fixation dot, a t-test was performed. To control for
inflation of spurious significant differences in the statistical
analysis, the chosen significance level of 5% has been scaled by
the number of comparisons. For the fixation data, there were 4
comparisons, giving a corrected significance 1level of 1.25%
(Subsequent statistical analyses are similarly corrected for the
number of comparisons.) For both observers, the 1local
transitions, measured with and without a fixation dot, are not
significantly different at the 1.25% level. For the global
transitions, results for observer JF are significantly different
while those for TKD are not. For our purposes, it is
particularly important that the local transitions for both

observers are not significantly different with respect to the




presence of a fixation dot. It suggests that the hysteresis can

not be attributed to eye movements entrained to global flow.

We next examined the effects brought about by systematically
altering the stimulus history. Specifically, we carried out
experiments for two additional ranges of signal, 180° and 1°,
keeping the noise distribution the same. Note that each of the
different signal distributions will generate a different history
for the directional content of the stimulus. Figure 2 shows the
results for both observers at the two additional ranges, together

with the original results at the 90° signal range.

From Figure 2 it can be seen that decreasing the signal
range has the effect of narrowing the hysteresis profile and
shifting it to the left. The leftward shift indicates that as
the signal range is decreased, a smaller number of signal dots is
required for a transition. This finding is not unexpected if
hysteresis is indeed dependent upon the directional content of
the stimulus, since a dot with a small directional range about
the vertical is a more effective stimulus for upward movement
than is one with a broad directional range. That is, fewer
signal dots should be needed to switch from a local to a global
percept when the dots chose their directions of motion from a
small rather than a broad distribution., Similarly, for a smaller
signal range, fewer signal dots should be required to maintain

the global percept once it established. Thus, the smaller the
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range of the signal distribution, the smaller the proportion of
signal dots required for the perceptual transitions. The
observed shift in the hysteresis profile with decreasing signal
range is further evidence that the directional content of the

stimulus is a contributing factor to the hysteresis.

Spatial properties

Since the stimulus motion vectors are distributed over
space, it 1is natural to consider how the spatial dimension
figures into the cooperative behavior we have demonstrated.
Also, for the purpose of formulating a mathematical model of this
behavior, we need an understanding of its spatial dependence.
Accordingly, we have studied the effects of changes in several
spatial parameters of the display: dot step size, dot density,
display area and location of the stimulus field. Effects were
measured for a decrease in step size by a factor of nine, a
decrease in dot density and display area by a factor of four, and

a displacement of the stimulus field 8° into the periphery.

1. Step Size

Transitions were measured using a smaller step size of 0.1°
for all three ranges of the signal distribution (i.e., 180, 90

and 1°9). For this step size, it was necessary to decrease the

interframe interval from 95.0 to 25.0 msec in order to generate

/
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smooth, continuous apparent motion.l These changes resulted in a
decrease in dot velocity by a factor of about 3, from 8.6°/sec to
2.9°/sec. It was also necessary to decrease the rate of change
in the proportion of signal, from 2 dots to 1 dot per frame, so
as to maintain a comparable duration for the presentation.

° and 0.90, are

Data obtained at both step sizes, 0.1
tabulated in Table 2 and shown in Figure 5. To ascertain the
statistical significance of changing the step size, a t-test was
carried out between respective pairs of transitions fcr the two
conditions. The results of these tests are also included in
Table 2. For observer TKD, statistically significant differences
at the 0.4% level are found at only two transitions: the local
transition for signal range 90° and the global transition for
signal range 1°. For observer JF, all but two transitions show
significant differences with a change in step size. The two that
are not significantly different are the global and 1local
transitions for the 90° signal range. In view of the differences
between the observers, we determined the proportions of the
variance (sz) associated with changing the step size. In Table
2, the proportion of the total variance that is accounted for by
the change in step size is 1listed for each transition (see

12 for a formulation of the magnitude of treatment effect,

Keppel
W 2), The largest proportion,( 2 = .37, was obtained for
observer JF at the global transition for the 1° signal range. At

all other transitions, the proportion of the variance that could

/Z




be attributed to the change in step size was at most .16. Thus,
while significant differences resulted from a change 1in step
size, the magnitude of the effect, as a proportion of the total

variance of the data, is relatively small.
2, Dot Density, Field Area and Field Eccentricity

The effects of changing the dot density, display area and
eccentricity are reported together. For observer JF,
measurements were made using a signal range of 90° and a step
size of 0.90. For observer TKD, the signal range was 180O and

the step size, 0.1°.

The dependence of hysteresis on dot density was assessed by
decreasing the number of dots by a factor of four, thus reducing
the density from 1.6 to 0.4 dots/degz. To maintain the same rate
of change in the proportion of signal and noise as with a full
complement of dots, the rate of change for the 0.1° step size was
reduced from 1 dot per frame to 1 dot every 4 frames, and for the

0.9° step size, from 2 dots per frame to 2 dots every 4 frames.

In order to determine the role of stimulus area, the
circular display field was reduced in area by a factor of four.
The effect of location was examined by centering this smaller
field 8° in the nasal visual field. For both of these

manipulations the dot density was maintained at 1.6 dots/degz,
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the original wvalue, so that when the field area was reduced by a
factor of four, the total number of dots presented was equal to

that for the reduced density case.

The data for these experimental conditions are presented in
Fig. 3 for observer JF, and in Fig. 4 for TKD. The original
results for both observers' at the appropriate signal range and
step size are also shown in the Figures as the data sets labeled
"A". Data for the reduced density stimuli are labeled "B", while
data for the reduced stimulus area are labeled "C". The
peripheral presentation data are labeled "D". These data are

summarized in Table 3 for both observers.

To determine the statistical significance of each spatial
manipulation, a t-test was performed between appropriate
transition points obtained with the original display conditions
and each of the other conditions. Results of these tests are
presented in Table 3. For observer TKD, the data from one
condition at each transition was found to be significantly
different, at the 0.4% level, from the data measured using the
original display parameters . These are the reduced display area
data at the local transition and the peripheral presentation data
at the global transition. In the case of observer JF, the
peripheral presentation data were found to be significantly
different from the original data at both the 1local and global

transitions. Observer JF also showed a significant difference at

’f
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the global transition for the reduced display area condition
compared to results for the original display parameters. 1In view
of the fact that the majority of the results were not
significantly altered by changes in the spatial properties of the
stimulus, we calculated the magnitude of the effect of each of
the spatial changes. The proportion of the total variance
accounted for by the manipulation of each of the spatial
properties tested is listed in Table 3. For both observers, the
proportion of the variance associated with each of the changes in
spatial parameters is relatively small, with a maximal value of

.20‘

In summary, the changes in spatial properties of the display
did produce some statistically significant differences in the
hysteresis profiles. However, post hoc statistical analysis
indicates that the magnitudes of such differences are small.
Undoubtedly, extreme changes in the spatial properties of the
stimulus would substantially alter the hysteresis characteristics
but, as a first approximation, we neglect the spatial properties

of the stimulus in the formulation of a cooperative model.

MODEL

As will be recalled, a cooperative system is defined as one

consisting of 1local elements that interact to generate global

behavior. The local elements in our cooperative model are a set

/5




of direction selective mechanisms. The interactions among these
mechanisms consist of nonlinear excitation and inhibition such
that those mechanisms with similar preferred directions of
movement facilitate one another’'s responses, whereas those
mechanisms whose preferred directions are further removed inhibit

one another's responses.

Specifically, the model comprises' N direction-selective
- mechanisms, each with a Gaussian-shaped sensitivity profile. For

h

the kt mechanism centered along direction ﬂk the sensitivity to

the direction of motion, @, is given by:
5,(8) = A exp [-[(g-9,)/h]1%*1n2] (1)

where h is the half-amplitude, half-bandwidth of the mechanism
and A is the amplitude. These mechanisﬁs are assumed to be
evenly spaced over 3600, with adjacent mechanisms having a
center-to-center separation equal to their nalf-amplitude half-

h .
mechanism's

bandwidth. The excitatory component of the kt
response at time t is denoted by E(ﬂk,t). Inhibition is mediated
by a set of N associated mechanisms, with the inhibitory

h

component of the kt mechanism’s response at time t given by

I(f,.t).

The dynamic response of this cooperative system is

represented by a pair of coupled differential equations with the

A
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form:
d
aEEk(t) = - Ek(t) +
N N 360
(-1 B, (0] F ol L B B (6)- T B 1,(6)+ E s, (B)prin(g)11]
i=1 i=1 g=1
(2)
d = -
at-:Ik(t) = Ik(t) +

N N
SERNCIN A TIDW NLNISEN WY AL WIS
j=1 j=1

where pr[D(g)] is the proportion of dots in the distribution D(g)
that move in direction ¢ and‘_)oj is a sigmoid non-linearity of the

form:
PR I -1 _ -1
S5Hy) = lrexptovy(y-0,00) [1+exp(V;0,)] (3)

where j=e,i. Interactions among the mechanisms are .defined by
the connectivity functions ﬁjj' in Eq. (2). The magnitude of the

interaction between a mechanism centered at ﬂk and one centered

’7
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at ﬂl is:

18330 = bJJ'exP[—’gk-ﬂl[/€JJ'I (4)

where j=e,i and j'=e,i. The form of Egs. (2)-(4) was originally
prcposed by Wilson and Cowan13 in their cooperative theory of
cortical tissue dynamics. The reader is referred to their paper
for a detailed description of the parameters in Egs. (2)-(4) and

a general discussion of the model's behavior under various input

conditions.

Based upon previous results obtained in our laboratory, the

number of mechanisms, N, was set equal to 12 and the half-

amplitude half-bandwidth, h, to 300.14 The parameters of Egs.

(2)-(4) were constrained in order for the system of equations to

operate in what wilson and Cowan'3 termed the active transient
mode . In this mode, the system exhibits hysteresis switching
between different steady states of activity. In the model

simulation, the percept of local random motion is represented by
a steady state of uniform activity across all mechanisms. Global
upward flow 1is Trepresented by a steady state in which the
activity is 1localized about the mechanism selective for upward
movement. A transition point is defined by the proportion of
signal at which the network switches between these two states of
activity. The results are shown in Fig..S, with the dashed lines

marking the transition points calculated from the model. For
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each observer, a single parameter set has been chosen to fit the
data for all three different signal ranges at both step sizes.
As can be seen, the model captures the leftward shift and
narrowing of the hysteresis profile with decreasing signal range.
This may be understood by considering that with decreasing signal
range, more activity is confined to fewer direction-selective
mechanisms in the neighborhood of the upward direction. Thus a
smaller proportion of signal is required to indicate the upward
direction of motion. Furthermore, having fewer such active
mechanisms also reduces the strength of the cooperative
interactions, resulting in a narrower hysteresis profile.
Fender and Julesz3 obtained a similar narrowing of binocular
hysteresis profiles when the number of stimulus elements was

decreased.

The model parameters for each observer are listed in Table
4. Note that the parameters for both observers differ only in a
single value, specifically, the amplitude of the mechanisms'
sensitivity profile. These parameter sets are not the only ones
that could have been used to fit the data. However, their
uniqueness is not of particular concern since we sought only to
demonstrate that the hysteresis data could be interpreted in the

context of a cooperative model.
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DISCUSSION

We have found hysteresis in the global motion percept which
results from the combination of different, localized motion
vectors. Furthermore, the hysteresis characteristics are rather
robust with respect to changes in the spatial parameters of the
display, including dot density, display area and location, as
well as step size. This relative spatial invariance suggests a

form of local cooperative processing.

We did find that the hysteresis profile was sensitive to
changes in the directional content of the stimulus.
Specifically, narrowing the directional range of the signal
brought about both a narrowing and a shift in the position of the
hysteresis profile. Such behavior is consistent with cooperative
processing and we have been able to describe it by a model
incorporating cooperative interactions among direction-selective
motion mechanisms. Both our experimental and theoretical results
provide further support for a cooperative interpretation of
movement perception in random-dot cinematograms, as initially

proposed by Chang and Julesz.2

What might the role of hysteresis, and more generally
cooperative processing, be in sensory processing? By the very
nature of its interactions, a cooperative network is well-suited

15

for the enhancement of signal in a noisy environment. In the

20
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case of binocular hysteresis, cooperative processing will make
the ocular registration necessary for binocular stereopsis
relatively resistant to noise. With respect to motion
perception, the function of cooperative interactions among
direction-selective mechanisms may be to enhance the perception

of unidirectional flow in the midst of noise.
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TABLE 1

Comparison of Transition Data With and Without Fixation Mark

WITHOUT WITH
OBSERVER  TRANSITION  FIXATION FIXATION  t-STATISTIC
MARK MARK P<0.0125
JF local .228+.113 .235£.093  t;5,=0.471
global .553+.073 .5974#.099  t,,,=3.327*
TKD local .347+.112 .314%.107 £, ,=1.674
global .683+.152 .698+.152  t;,,=0.654

o — - = — - - - D - W — - D . D Y D D - D - D - - - - — -

* = gtatistically significant
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TABLE 2

Comparison of Transition Data for Two Different Step Sizes

BSERVER ~ SIGNAL TRANSITION JSTEP SIZE t-STATISTIC OgséigggT
RANGE 0.9 0.1 P<.004 MAGNITUDE

(w?)

JF 180°  1local .264+.159 .166+.148  t, o =4.461%*  0.09

global .776+.122 .842+.160  t,0.=3.279*  0.05

90°  local .228+.113 $211%.116  t,.,=0.956 <0.01

global .553+.073 .597+.126  £,,0=2.787 0.04

1°  local .051+.062 .085+.082  t;g,=3.251* 0.05

global .351+.059 .462%.083  t,,,=10.89%  0.37

TKD 180°  local .378+.160 .321%.157  £,40=2.521 0.03

global .808+,159 .818+.138  t, 0=0.446 <0.01

90°  local .347+.112 -250+.103  t,.0=5.590* 0.16

global .683+.101 2717£.099  t,0=2.090 0.02

1°  1local .139+.096 .125+.093  t,,,%1.066 <0,01

global .343+.076 .395+.099  t. ,=4.091* 0.07

197

* = gtatistically significant
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TABLE 3

Comparison of Transition Data

For Four Different Display Conditions

. —— " = - ——— . - — —— - —— D - — W —

OBSERVER TRANSITION DISPLAY ,TRANSITION
CONDITION

VALUE

t-STATISTIC

P<0.004

MEASURE
OF EFFECT
MAGNITUDE

(L?)

- — - —— - - — - —— - — D D D G D W . T —— — Y = — - ——

JF local
global

TKD local
global

o 0o w » U O w »

o9 0 w o >» o O W >

.228+.113
.241+.110
.186+.149
.171+.137
.553+.073
.572+.100
.634+.121
.657+.123
.321+.157
.314+.147
.226+.134
.292+.156
.818+.138
.871+.108
.865+.097
.737+.075

* = gtatistically significant

for explanation of letters see caption of Figure 3

t178=0.786

t),g=2.077
t17

ty,g=1-448
ty9

t =6.690%*

178

t158=0.312

t =4.646*

198

t158=1.163

= *
8 2.966

= *
8 5.261

<0.01
0.09

<0.01
0.04

0.03

0.06
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TABLE 4

Model Parameter Values {[Equations (1)-(4)3}

PARAMETERS VALUES
N 12.0
h 30.0°
o 1.0
A 10.0
re 1.0
ri 1.0
ve 0.5
Ge 9.0
Q. 8.0

i
bee 25.5
dée 77.0
bie 22.95
bei 22.95
Oei 115.5
‘ii 57.8
Af 28.88 (observer JF)

31.75 (observer TKD)

2%
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FIGURE CAPTIONS

Figure 1. Data from two observers (JF,TKD) showing the
transitions in the percept of motion direction for two different
histories of stimulus exposure (shown by arrows). The solid
circles indicate the proportion of "signal" dots required for the
transition from random, local motion to global, upward flow (G);
the open circles indicate the proportion required for the
transition from global, upward flow to random, local motion (L).
Error bars represent one standard deviation. The range of the
signal distribution was 90°. The separation between transition
points within each panel is a measure of hysteresis. Step size,

0.9°.

Figure 2. Hysteresis profiles from the same observers at signal
ranges of 180°, 90° and 1°. Note the narrowing and leftward
shift of the profiles with decreasing signal range. Step siue,

0.9°.

Figure 3. Comparison of results from observer JF for A) original
display parameters, B) four-fold decrease in dot density, C)
four-fold decrease in display area and D) four-fold decrease in
display area plus displacement of field 8° into nasal periphery.

The open symbols represent "local" transition data; the closed

29




symbols, "global" transition data. The signal range is 90° for a

o

0.9° step size.

Figure 4. As in Figure 3, for observer TKD with a signal range

of 180° and a step size of 0.1°.

Figure 5. The format here is as in Figure 2, but with additional
data for the 0.1° sfep size indicated by square symbols. The
dashed 1lines mark the transition points calculated from a
cooperative model (see text). Note that the model captures both
the leftward shift and narrowing of the hysteresis profile with

decreasing signal range.
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Project Two:

Role of eye movements in
improving direction discrimination

William Kosnik, John Fikre,
and Robert Sekuler




Practice improves an observer's ability to discriminate
one direction of movement from another highly similar direction
of movement (Ball and Sekuler, 1982). This improvement in
discrimination has two noteworthy features, directional selec-
tivity and persistence. More particularly, the improvement is
restricted to directions that are similar to the one with which
the observer has practiced, and the improvement endures for
several months without noticeable decrement. We sought to clarify
the origin of this direction-specific change in discrimination.

Basically, improved direction-discrimination could be
achieved through two different routes. For one, the route may be
purely visual, possibly reflecting changes in the selectivity of
neurons at some stage of the visual system. Alternatively, the
route may be. sensori-motor, with the observer learning to use
tracking eye movements to discriminate between two directions.

In support of this second possibility McHugh and Bahill
(1985) have shown that an observer can learn to use smooth
pursuit movements to track a novel target and that the movements
are specific to the waveform of the target. They have also shown
that, once learned, the observer retains this ability over a long
period of time. Given this ability of the oculo-motor system, we
sought to determine if eye movements play a role in an observer's
lea~ning to discriminate the direction of moving targets.

In their original paper Ball and Sekuler (1982) did

measure the eye movements of two observers and found steady
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fixation with high levels of performance. However, significant
questions about the role eye movements remained unanswered.
Because their recording system could not resolve eye movements
smaller than approximately 45 minutes of arc, Ball and Sekuler
were unable to rule out the possibility of small, but visually
significant, eye movements. This possibility gains importance
since the stimulus duration they used, 500 msec, might prevent
very large pursuit movements anyway. More importantly, though,
they neglected to record eye movements at different stages of
training. Therefore, it remains possible that changes in eye
movements miglLt have played some role iﬁ the observed change of
performance.

We decided to investigate sensori-motor contributions
to direction discrimination more thoroughly by analyzing an
observer's eye movements at the beginning and end of training
using an eye tracking device that is capable of resolving
movements of about one minute of arc.

METHOD
Observer

The observer was a 20-year old male who had never
participated in a psychophysical study before. He was paid
$7.50/hour for his participation. Also, to insure high
motivation, he received an additional one cent for every correct
response. This was the same motivational device used in the
earlier work on motion discrimination (Ball and Sekuler, 1982).

The observer viewed the stimulus display with the right eye;

37




the other eye was occluded with an opaque patch.
Apparatus

The experimental set up was similar to that used by Ball and
Sekuler. The stimuli were 512 spatially-random dots moving in a
uniform direction at 10 degrees per second across the face of a
cathode ray tube (CRT). The dots were plotted under computer
control at a framerate of 28.5 Hz, again similar to that used in
the earlier study. The dots, which appeared within a circular
aperture of 5 degrees, had a luminance of 104 cd/mz. They were
easily visible against the CRT's luminance of 2.06 cd/mz. A small
fixation point was provided in the center of the screen.
Procedure

A trial consisted of two stimulus presentations, each
lasting 640 msec (except on the first day of training, when each
presentation lasted 512 msec). The two presentations were separ-
ated by a interval of 1.25 sec, during which the CRT was blank.

The directions of movement of the dots within the two
presentations were either the Same --in both presentations
the dots moved in a direction of 90 degrees from horizontal
(upward)-- or Different --during one interval the dots moved
upward and in the other interval the dots moved either 3 degrees
to the left (93°) or 3 degrees to the right (87°) of upward. Same

and Different trials were randomly presented with equal

probability. For Different trials the computer randomized whether
the upward movement would occur in the first interval or in the

second. Also for Different trials the two non-upward directions,
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87° and 930, occurred randomliy, out egualiy often.

After each trial the observer judged whether the two
directions had been the same or different, that is, whether
both stimuli moved in the upward direction or whether one
moved in the upward direction and the other moved in a direction
other than upward. A computer-generated tone provided knowledge
of the correctness of the observer's response.

Training comprised an extended series of diécrimination
trials in blocks of 32 trials each. Because half the trials
were Same and half Different and because there were two stimulus
presentations per trial, every block of 32 trials yielded 64
stimulus presentation intervals --48 in which movement was
upward, 8 in which movement was in a direction of 87° degrees,
and another 8 in which movement was in a direction of 93°
degrees.

On the first day of training four blocks of 32 trials
were run. On subsequent days ten blocks of 32 trials each
were run. A rest was given after each block. Training was spread
out-over eight days.

Eye movement recording

Two dimensional eye movements were measured from the
observer’'s right eye by an Scientific Research International
(SRI) dual Purkinje Image Eye Tracker (Mark IV). This electro-
optical instrument determines the instantaneous position of the
eye from two reflections of a narrow infrared beam projected into
the eye. One reflection originates from the anterior surface of
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the cornea (the first Purk ~je image) and the other from the
posterior surface of the lens (the fourth Purkinje image).
Rotational eye movements are derived from the difference in the
relative position of these two images.

The Eye Tracker's noise level was determined by tracking
a stationary, artificial eye. Expressed as the standard
deviation of the sampled positions of the stationary artificial
eye, the Eye Tracker's noise level was 0.43 minutes of arc in the
horizontal channel and 0.40 minutes of arc in the vertical
channel.

The gain factors for the instrument's horizontal and vertical
channels were determined by a calibration procedure in which the
observer fixated a target on the CRT. This target made five steps
first along the horizontal axis, and then the vertical axis, in
increments of 0.25 degrees. At each increment, when the observer
was satisfied that he had achieved good fixation of the target,
he pressed a switch, triggering a 640 msec period of data
collection. The target then moved to its next position. This
procedure continued until eye positions had been recorded in
response to five stimulus positions along the horizontal axis and
five along the vertical axis.

After the calibration procedure, we fit a least squares
regression line to the recorded eye positions that were plotted
against the corresponding stimulus positions. Separate
regression lines were fit to horizontal eye positions and to

vertical eye positions. Horizontal and vertical gains were
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obtained from the regression coefficients of those regression
lines. We estimated the accuracy of fixation from the correlation
between the target positions and the eye positions, This
correlation coefficient was at least 0.99 for each axis.

Eye position records obtained from four blocks of trials on
the first day of discrimination training were digitized at a rate
of 500 Hz and stored in computer memory. A 500-Hz sampling rate
was used in order to accommodate the full, 200-Hz bandwidth of
the recording instrument. Eye positions were collected
throughout the 512 msec stimulus presentation. This yielded one
eye position record of 256 data points.

On subsequent training days a 640 msec stimulus presentation
interval ‘was used. This change was necessitated by the intro-
duction of a low pass filter in the data collection system on
the second training day, as explained below.

On the last day of training, we measured eye positions
during the last five blocks of discrimination training. The
data were low pass filtered at 50 Hz (-36 dB/octave) prior
to being digitized at a rate of 100 Hz. These recording
parameters required a 640 ms stimulus presentation, but resulted
in a considerable savings in computer storage without' loss of
significant eye position information. Thus, each eye position
record collected on the last day of training contained 64 data
samples.

Editing eye position records. A continuous record of the

status of the Eye Tracker was obtained at the same time that an
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eye pcsiticon was being recorded. This record contained
information about the occurrence of eye blinks and occasional
interruptions of tracking. If an eye blink occurred or if
tracking had been interrupted at any time during a record,
the entire record was omitted from the analysics, 1In addition,
since we wanted to know whether the observer was tracking
the moving stimulus, we eliminated records that contained
saccades, In particular, any record containiﬁg a saccade
with a velocity greater than 30° per second was omitted from the
analysis.
Results

Discriminability

The observer's discrimination performance for each block of
trials was expressed in units of d' (Swets, 1964), computed from
the proportion of Different trials correctly identified as
"different® (that is, hits) and the proportion of Same trials
incorrectly identified as "different"™ (that is, false alarms). A
discriminability score for one day was obtained by averaging
across all blocks of trials run on that day.

The first question that needs to be answered is whether
the observer's discrimination performance changed with practice,
and, if it did, whether such changes mirror those previously
reported by Ball and Sekuler. To answer these questions we have
portrayed in Figure 1 the observer's discrimination performance
over the eight days of training. To facilitate comparison we have

plotted on the same axes the results of Ball and Sekuler (1982),
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which represents the averare performance of eight okservers. Note
the similarity of tne two curves, each demonstrating a steady
improvement in performance and reaching the same high level of
discrimination.

Eye Movements: Orientation

Next we wanted to determine if the improvement in discri-
mination was mediated by the observer’'s having learned to track
the stimulus. Since tracking eye movements would cau#e successive
samples of eye position to lie along a straight line, we
developed an estimate of the main axis along which the eyes moved
during each stimulus presentation. We called this estimate the
dominant orientation. To obtain this dominant orientation, t"e
eye positions recorded during an presentation interval were
represented in two dimensions and a least squares regression line
fit thereto. The slope of this line, expressed in degrees from
the 0° meridian, defined the dominant orientation of the eye
movements.

To illustrate this procedure two eye position records are
shown in Figure 2; the dominant orientations have been drawn
through the sampled eye positions. For each record, the F ratio
associated with the regression coefficient is highly significant:
F=898.6 and F=110.4, for the top and bottom panels respectively,
both df=1,253 and p<0.0001.1

Table 1 gives the mean dominant orientation of the eye
positions recorded during the first and last days of training.

These dominant orientations have been sorted according to
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stimulus direction, with the 87° direction in the first column,
the 90° direction in the second, and the 93° direction in the
third. Measurements made at the begihning of training are
represented in the top row and measurements from the end of
training are represented in the middle row. Note that
orientations are expressed as axial values, meaning that 0° and
180° are equivalent to one another. Orientations take on values
from 0 to 179°. Means and variances are computed using statistics
for directional data (Mardia, 1972). §tandard deviations are
shown in parentheses, with the number of trials included in the
average shown in brackets. 3

As can be seen in the top row of Table 1, the mean dominant
orientation for records at the beginning of training was centered
near the horizontal axis (0-180°) for all three stimulus
directions. Also note that there is no correspondence between the
change in direction of the stimulus movement and the dominant
orientation. A change in stimulus direction from 90° to 87° --a
shift of 3° to the right-- is not accompanied by a corresponding
change in the dominant orientation. Instead, the dominant orien-
tation shifted from 168° to 176°, a net change of 8° to the
left. A change in stimulus direction from 90° to 93° (a shift of
3° leftward) also failed to elicit a corresponding change in
dominant orientation. Here, the dominant orientation shifted 6°
to the right.

An examination of the middle row of Table 1 shows no better

correspondence between stimulus direction and dominant orien-
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tation at the end of training. Again, the mean dominant orien-
tation at the end of training was close to the horizontal axis
for all three stimulus directiéns. In response to stimulus
movement of 90° the dominant orientation is 24°. a change in
stimulus direction of 3° to the left or right of vertical was not
followed by a similar change in dominant orientation. 1In fact,
the mean dominant orientation was 17° for both off-vertical
stimulus directions.

So that the reader can better appreciate the variability
in the obtained dominant orientations, Figure 3 shows the
distribution of the dominant orienéations cumulated over
presentation intervals. These are the distributions that Table 1
summarized. The upper portion of Figure 3 portrays data collected
at the beginning of training and its middle portion portrays data
from the end of training. Fach column represents one direction
of stimulus movement: 87°, 90°, or 93°.

Note that for neither the beginning nor the end of training
is there any obvious systematic relation between the dominant
orientations and the direction of the stimulus motion. Moreover,
there is no systematic change in the distribution of dominant
orientations from beginning to end of training.

Eye Movements: Magnitude

Having characterized the dominant orientations of the eye
position records, we then wanted to determine the 1linear
distances the eye travelled along the dominant orientations. The

magnitude of the dominant orientation was measured along the
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length of the regression line. The limits of the regression line
were determined by finding the maximum and minimum values of one
of the coordinates --either x or y-- and then computing the othe.
coordinate from the regression equation. The distance between
these two pairs of coordinates defined the magnitude of the
dominant orientation‘of the eye position record. The lines of
best fit in Figure 2 have been drawn to correspond with this
definition.

We used this measure of eye movement magnitude, rather
than the total distance the eye moved during a stimulur presen-
tation, because, within any one stimulus presentation, the eye
often moved in several different directions as well as back and
forth along the same direction. Since we were mainly concerned
with eye movements used to track the stimulus, we wanted a
magnitude measure that would characterize the linear distance the
eye would have moved to track a stimulus moving in a single
direction. The length of the regression line defined by the
limits of the eye position record best estimates this distance.

Table 2 lists the mean magnitude of the dominant orientation
for all eye position records from a given day of training.
The top row of the table lists the magnitudes from the beginning
of training and the middle row from the end of training. Columns
represent different stimulus directions. At both the beginning
and end of training just one minute of arc separates the dominant
magnitude associated with the three stimulus directions.

Averaging across the three stimulus directions, less than two
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minutes of arc distinguishes the mean dominant magnitude at the
beginning of training from the comparable value at the end of
training.

Note that across all stimulus directions and across days of
training the mean dominant magnitude was very much smaller than
the distance cravelled by the stimulus on either the first or
last day of training --5.1° on the first day and 6.4° on the last
day. The distributions of magnitudes associated with each
stimulus direction are shown in the top and middle portions of
Figure 3. These magnitudes range from 5.4 to 30.0 minutes of arc.

Supplementary Measures

D

To furthe& characterize the eye movements made during
discrimination training we measured eye movements under two
additional conditions. In the first condition the observer
was instructed to track the moving stimulus. 1In the second
condition eye movements were recorded while the observer simply
fixated a stationary fixation point with the stimulus absent.

Eye Movements: Intentional Tracking. The mean dominant
orientations measured during intentional tracking are shown
in the bottom row of Table 1. These orientations are very
similar to the stimulus directions. Tracking eye movements
to the 90° and 93° stimulus directions deviated on average
just 2° from those directions. In response to the 87° stimulus
the dominant orientation was 79°, indicating an error in tracking
of 8° to the'right. Nevertheless, the directions of the tracking

eye movements were in the correct relation to the direction of

417




e

R . a e A sEmRa

e

the stimuli.

The distributions of the tracking dominant orientations
for each stimulus direction are shown graphically in the bottom
row of Figure 3. It can be seen that the dominant orientations
cluster near the direction that the target moved. Also, note the
narrow distribution of the tracking eye movements for each of the
three stimulus directions.

The bottom row of Table 2 shows the averaée magnitude
of the eye movement records taken while the subject attempted
to track the stimulus. When the observer attempts to track
the target, which moves 6.4 degrees; his eye moves a mean
distance of 1.75 degrees. This tracking distance is nearly
ten times greater than 0.18 degrees, the mean magnitude of the
dominant orientation during discrimination training in which the
observer was not instructed to track.

The distributions of the magnitudes of the tracking eye
movements for each stimulus direction are illustrated in the
bottom portion of Figure 3. The size of these movements ranged
from 17 to 169 minutes of arc.

Eye Movements: Fixation. We then recorded eye positions
while the observer was fixating a stationary targgt with no dots
present. We compared these records to ones obtained under
conditions of discrimination training, in which both moving dots
and a stationary fixation target were present.

In the absence of moving dots, the observer's mean dominant

orientation is 159° (sp = 26.8). The magnitude of the dominant
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component during fixation is 13 minutes of arc (SD = 7.45). These
values are similar to the measurements obtained during training
(see first two rows of Table 1). So the observer maintained
approximately the same degree of fixation either while fixating a
point on an otherwise blank screen, or while fixating the same

point superimposed on a field of moving dots.

Discussion

Improvement in the discriminability of the direction
in which targets move does not depend on the observer learning
to track the moving target. For one thing, the eye movements
recorded during training bore little resémblance to eye movements
obtained when the observer deliberately tracked the stimulus.
Neither the orientation nor the magnitude of the dominant linear
component extracted from the eye position records matched the
direction or distance the stimulus travelled. Dominant orien-
tations were closer to the horizontal axis than the vertical
axis, along which the stimulus moved. There was also consi-
derable variability in the dominant orientation of the eye
position records. The magnitudes of the dominant linear compo-
nent of the eye position records were about 32 times smaller than
the extent of the stimulus movement.

Also, the size and dominant orientation of eye movements
were unchanged from the beginning to the end of training,
although discriminability changed dramatically. 1In fact,
both at the beginning and the end of training eye movements

closely resembled fixation eye movements in magnitude and
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orientation.

In contrast to the lack of tracking eye movements during
training, the observer was clearly able to track the stimulus
when asked to do so. Here, the direction of tracking eye
movements closely approximated the direction of the stimulus
movement and the size of the tracking movements were about 10
times larger than the average magnitude of the dominant orien-
tation of the eye position records during training.

Because the mean magnitude of tracking movements was
only 1.75°, we were curious to discover why the tracking eye
movements were smaller than the 6.4 Aegrees travelled by the
stimulus. Three factors may be help to explain this difference.
First and most important, it was clear from the tracking records
that the observer did not track at the same rate of the stimulus
movement. The observer tracked at a rate of about 6°/sec instead
of the 10°/sec rate of the stimulus. Since the stimulus was a
display of moving dots that continually filled the screen, the
observer could follow the direction of the moving dots without
having to fixate on a single dot. Thus, the distance covered
while tracking the display could be less than the distance
covered while tracking a single dot. Second, although the dots
moved a total of 6.4°, the diameter of the viewing aperture
was only 5°, Thus, the maximum distance the observer could
track the stimulus would be only 5°. Third, at the start of
testing, the observer reacted to the onset of stimulus movement

with an appreciable latency, about 200 msec. Such a delay in the

so
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start of tracking would shorten the total tracking distance.
Taken together, these three factors account for the shorter mean
distance of the observer's tracking eyevmovements compared to the
distance the target moved.

We found that after some practice at tracking, the observer
managed to reduce the latency of his tracking response to as
little as 10 msec. This finding is consistent with the report of
McHugh and Bahill (1985) whc found that observers were able to
learn to track a target that had a predictable onset with no
delay.

Finally, our results have answered the guestion with
which we began: improvement in direction discrimination with
practice is the product of a change in a visual process, rather
than some change in sensori-motor response. With this clarifi-
cation in hand, research can now attempt to delineate the visual
processes that give rise to long-lasting, direction-specific

improvement in discrimination.
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Footnote

1. Note that our procedure for estimating dominant orientation
of the eye positions assumes that the eye’'s excursions can be
described by a linear function. Although a record may be
associated with a significant regression coefficient, it does not
imply that it can be completely described by a linear model. A
test of the lack of fit to a linear model shows a significant
departure from linearity in the top panel (F=2.35, df=39,214, p«<
.001), but not in the bottom panel (F=0.91, df=23,230). The
record in the top panel departs froﬁ linearity because it
contains other non-lifear components. Since our main concern is
to discover if the eye moved in the same direction as the
stimulus, by assuming that each record contains a significant
linear component, it would be possible to find out if the
orientation of this linear ccmponent matches the direction along

which the stimulus traveled.
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Table I

Mean Dominant Axial Orientations of the
Eye Position Records (in Degrees)

Training Session Stimulus Direction
87° 90° 93°
Beginning 176 168 162
of (18.5) (20.3) (19.8)
Training [28] [(172] [27]
End 17 24 17
of (26.5) (27.3) (19.8)
Training [40]) (235]) [40)
Intentional 79 88 91
Tracking (2.67) (2.39) (1.30)

Note-Standard deviations are shown in parentheses; the number
of orientations included in each mean is shown in brackets.
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TABLE II
Mean Magnitudes of the Dominant Axial Orientations of
the Eye Position Records (in Minutes of Arc¢)
Training Session Stimulus Direction
87° 90° 93°
Beginning 12 11 11
of (3.66) (3.18) (2.64)
Training (28] [172) [27]
End 11 10 10
of (7.80) (4.32) (2.82)
Training [40] [235] [40]
Intentional 96 100 122
Tracking (30.1) (37.9) (36.2)
Note-Standard deviations are shown in parentheses; the number
of orientations included in each mean is shown in brackets.
i
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Figure Captions

Figure 1. Discriminability (d') of the direction of a moving
target as a function of the number of training days. The
figure compares the performance of the observer in this study
(B.McH.) with the average performance of eight observers in the

Ball & Sekuler (1982) study.

Figure 2. A two dimensional eye position record collected
during one stimulus presentation is displayed in each panel. A
least squares regression line is fit to each record and represen-
ts the dominant axial orientation of the eye position record.
The length of the regression line defines the Hhypothetical
distance the eye moved along its dominant orientation. The
calculation of this distance is described in the text. Note that,
although the two records are well described by a straight line,
the record in the top panel departs significantly from a linear
model whereas the record in the bottom panel is completely

described by a linear model (see footnote 1).

Figure 3. Distributions of the dominant axial orientations
of the eye position records arranged according to recording
session and direction of stimulus movement. The figure also
displays the magnitudes of the orientations. Note that the
beginning and end of training magnitude records are plotted on a

scale of 60 minutes of arc; the magnitudes recorded during
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intentional tracking of the stimulus are plotted on a scale of

300 minutes of arc.
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Project Three:

Direction Perception in
Complex Dynamic Displays:
The Integration of Direction Information
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INTRODUCTION

Though motion perception does depend upon spatially local
processes, under certain circumstances global processes make an
important contribution. For example, the human visual system can
integrate different, spatially-intermingled motion vectors into a
global percept of motion in a single direction (Adelson and Movshon,
1982; williams and Sekuler, 1984). Such integrated éercepts may
offer important clues to the mechanisms of motion perception. To
exploit such clues we have followed the tradition of using
discrimination performance to probe underlying psychophysical
mechanisms (e,g,, Graham, 1965; Wilson and Gelb, 1984). Specifi-
cally, we were interested in how easily observers could discriminate
between two different global motions when each had resulted from the
integration of many different motion vectors.

Our stimuli were random dot cinematograms in which each dot took
an independent two-dimensional random walk with steps of constant
size. The direction any dot moved, from one display frame to the
next, was independent of the dot's previous movements as well as the
movements of other dots. All dots chose their directions of
movement from the same probability distribution. Williams and
Sekuler (1984), using uniform distributions of directions, showed
that the resulting global percept of motion depends upon the range
of the distribution. Specifically, uniform distributions with
ranges of directions less than 180° tend to produce a perception of

global motion in the approximate direction of the distribution's
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mean even though the random perturbations of each dot are evident.
As the range increases further, the perception of global motion
diminishes, until at the limit, a uniform distribution with 360°
yields a percept of only local random motion of individual dots. 1In
this present study, we measured the discriminability of the
direction of global motion using Gaussian distributions of
directions.

To anticipate, our results show that direction discrimination of
the global motion percept is influenced by both the bandwidth of the
controlling direction distribution and duration of the stimuli, but
not by the paths travellied by individual dots over time. As will be
shown later in the discussion, our data are consistent with a line-

element model described previously by Williams et al. (1984).

METHODS

Stimuli

Stimuli were 256 computer-generated dots plotted on a cathode
ray tube (CRT) display with a relatively fast, P4, phosphor. A
mask, with a circular aperture 8° in diameter, covered the face of
the CRT. This aperture allowed only about 130 of the 256 dots to be
visible at any one time. The density of dots was 2.56 dots per
square degree of visual angle. Each dot subtended 6'. Luminance of
a single dot was about 0.82 cd/m2. The luminance of the mask was
0.07 cd/m2; the veiling luminance was 0.03 cd/m2.

Stimuli were presented at a frame rate of 17.5 Hz. From frame
to frame, each dot's movements were controlled by a predefined
distribution of directions stored as an array of x- and y-

increments. The predefined distribution of directions chosen was
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Gaussian.l The computer read the increment values for a dot's
movements from the array, added the increments to the dot's current
position and transmitted the dot's new x- and y-position to the CRT
display via digital-to-analog converters. The initial screen
location of each dot wss randomized for each presentation, rendering
the pattern of dots an unreliable clue to direction.

Supported and restrained by a chin-headrest, the seated
observer viewed the CRT monocularly from a distance of 57 cm. The
non-preferred eye was covered by a translucent patch. The height of
the CRT was set so that the center of the aperture was at approx-
imately eye level and observers were required to maintain fixation
on a dot located at the center of the aperture. Push-buttons
connected to the computer initiated each trial and signalled the

observer's responses.

Observers

One of the authors (SW) and four university students served as
observers for all experiments. Except for SW, all observers were
naive to the purposes of the present experiments and had normal, or
corrected-to~normal, visual acuity. Those who required corrective

lenses wore them for all experiments.

Procedure

Stimuli were presented in a two-alternztive forced-choice
procedure. Though the durations of the paired test intervals varied
from condition to condition, on any single trial the two were always
of equal duration. Interstimulus interval was fixed at 500 msec.

Different distributions of directions governed motion in the
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two intervals of each trial. One test interval, picked at random,
was governed by a distribution whose mean direction was 90 deg
(upwards); we'll refer to this stimulus as the standard. Motion in
the other test interval was governed by a distribution whose mean
was greater than 90 deg (that is, counterclockwise of upwards);
we'll refer to this stimulus as the comparison. The observer had to
identify the interval in which the global direction of motion was
upwards.

A session consisted of six blocks, 48 trials each. A block of
trials was characterized by one combination of direction bandwidth
and test-interval duration. 1In order to produce a large range of
discrimination performance, from chance to near perfection, six
comparison stimuli with different mean directions were used in each
block. Trial-wise feedback was provided, with a low tone signalling
an incorrect response. Approximately four seconds elapsed between
trials. Over any 48-trial block, the standard stimulus appeared

equally often in the first and second intervals.
EXPERIMENTS

Experiment I. Bandwidth and Duration ‘
This experiment examined direction discrimination as a function

of i)the directions present in the stimulus, and ii)stimulus dura- i
tion. Four ranges of directions were used, each defined by a
different Gaussian distribution of directions. The distributions
had standard deviations (SD) of 0.0,2 17, 34, and 51 deg. Larger
standard deviations, or bandwidths, imply a greater range of
directions was simultaneously present in the cinematogram. All

standard deviations used produced global motion in the approximate

———
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direction of the mean of the distribution.

A pilot study showed that discrimination varied with bandwidth.
So, to span the psychometric functions of each bandwidth, sets of
comparison stimuli with different means were needed. Table 1 lists
the six comparison means associated with each bandwidth. Five
durations of presentation, three, six, nine, 12, and 25 frames, were
completely crossed with the four bandwidths. For eéch combination
of bandwidth and duration, an observer was tested on a total of 288

trials.

- - — - — - - — - " T - ST R S G - —— -

Analysis

Responses were aggregated to yield the percent correct for each
combination of standard and comparison. The percent correct
responses for individual observers were then fit by the Quick (1974)

psychometric function, given by
*c)\ P
¥ (s)=1-2- (X*S) (1]

where S is the separation in mean direction between the standard and
comparison stimulus, measured in deg, 1/k is the difference between
standard and comparison means at which ¥(S) equals 0.5 (chance
performance), and P determines the maximum slope of the function in
the neighborhood of 75% correct. This function provided good fits
to the observed data (mean r2 for 100 data sets was 0.89).
Discrimination thresholds, defined as the difference between

standard and comparison mean directions sufficient to yield 75%
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correct, were evaluated from the fitted psychometric functions.
Threshold values were then treated by analysis of variance (ANOVA)

including a trend analysis on the two variables.3

RESULTS

Discrimination thresholds, averaged over observers, are plotted
as a function of bandwidth in Figure 1. As the figure shows,
discrimination thresholds for each duration increased with stimulus
bandwidth. Generally, discrimination thresholds changed relatively
little as stimulus SD was increased from 0.0 to 17 degrees, but
changed substantially with further increases. This observation was
confirmed with a trend analysis of the data averaged over durations,
which yielded significant linear and non-linear components (E1,2 =
5520.72 and 22’4 = 8.45, both pP<0.05). Notice that at the smallest
bandwidths, the discrimination thresholds for the four longest
durations are indistinguishable. However divergence does occur as
bandwidth gets larger. 1In contrast, the results at the shortest
duration, three frames, differ from those of other durations at all
bandwidths. This interaction between bandwidth and duration was
confirmed by the ANOVA (E12,24 = 13.03, P<.05). This implies that
as bandwidth grows, it may take longer to perceive the global flow.
It is clear however, that regardless of bandwidth, discrimination
thresholds obtained with the briefest presentations are consistently

higher than those obtained with longer ones.

To more clearly show the effect of duration, we have replotted
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the data as a function of duration in Figure 2. The figure shows a
progressive decrease in discrimination threshold as a function of
duration (linear trend E1,2 = 256.74, P<0.05). However, the
decrease in threshold with duration also contains non-linear
components (£3,6 = 14.72, P<0.05). A larger dccrease occurred when
duration was increased from three to six frames than when duration
was increased from 12 to 25 frames. Moreover, discrimination
thresholds for the two smallest bandwidths seemed to reach an
asymptotic level between six and 25 frames of duration. 1In
contrast, for the largest bandwidth, each increase in duration

produced a further decrease in the discrimination threshold.
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Experiment I1I1. Effective Dot Path

In Experiment I, discrimination thresholds increased as
bandwidth increased. However, because several aspects of the
stimuli covary with bandwidth, that experiment does not allow
unequivocal inferences to be made about the cause of the threshold
increase. By definition, the number of directions contained in a
stimulus increases with bandwidth. So, as bandwidth increases, the
path taken by any single dot contains a greater gaxignonf direc-
tions. This greater variety might itself have increased the
variability of the perceived global direction, thereby impairing
global direction discrimination for the stimulus as a whole. We
wanted to determine, therefore, how discrimination performance might
vary with the number of directions occurring in each dot's path.

To answer this question, we created two stimuli that produced
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very different individual dot paths but had the same aggregate
direction distribution. Both types of stimuli are illustrated in
Figure 3. 1In one, dots took a two-dimensional random walk as
described earlier. Because each dot's path was random, within
limits imposed by the distribution bandwidth, we'll refer to such a
stimulus as the random-path type. Such paths are represented in
panel A for two different dots. In the other type of stimulus, a
different scheme generated a dot's path. Once a dot had randomly
chosen a direction for its first displacement, it continued to move
in that same direction for the entire presentation. Because each
dot moved along its own characteristic fixed path, we'll refer to
such a stimulus as the fixed-path type. Such paths are rerresented
in panel B for two different dots. Note that although the aggregate
direction distributions for both stimuli are identical, the
variability of their dot paths are very different. 1In the random-
path stimulus, the controlling distribution of directions creates
differences between different dots' paths, and also introduces
randomness to any single dot's path. In the fixed-path stimulus,
the controlling distribution affects only differences between

different dots' paths.

. —— ——— - —— - ——— - ——— - - — - - - — - —— - -

The two stimulus types were used to produce three test
conditions. 1In one condition, both presentations within a single
trial were fixed-path stimuli (fixed-path condition). 1In a second
condition, both presentations were random-path stimuli (random-path

condition). 1In the third condition, one random-path and one fixed-
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path stimulus were presented on each trial (combined condition).
In this last condition, the two types of motion were completely
crossed with respect to which served as the standard or comparison
and also their presentation order.

Discrimination performance was measured for six separations
between the standard and comparison mean directions: 2, 4, 5, 6, 8,
and 10 deg. All stimuli had a Gaussian direction distribution with
a standard deviation of 34 deg. Each stimulus was presented for
nine frames. This bandwidth and duration were chosen because in
previous experiments this combination produced a moderate level of
performance. This ensured some latitude for discrimination
performance to improve or grow poorer as condition varied from
random-path to fixed-path. Observers were the same as those in

Experiment I.

RESULTS
The data, averaged over observers and represented as percent
correct, are plotted as a function of the difference in mean
direction between the standard and comparison stimuli in Figure 4A.
The figure shows that all three conditions yielded similar discrim-

ination (22,8 = 1.22, B>.05).
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At the duration used in this experiment, nine frames, the two
types of motion were different. However, if one looked at the
stimuli through a narrow time window, in particular, examining only
a single pair of successive frames, the minimum needed to define

motion, the two types of stimuli would be indistinguishable. We
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were concerned, therefore, that this short-term similarity between
stimuli might account for the similarity in performance with the two
types of motion. This concern would be serious if performance had
become asymptotic at a presentation of just two frames. Then,
observers would have extracted all the necessary stimulus
information before any real differences between stimulus types could
have become manifest. But for our experiments this concern is not
justified.

Results from Experiment I show that asymptotic performance in
Experiment II would certainly have required presentations longer
than just two frames. 1In Figure 4B we have plotted the average of
the earlier results for the stimulus with an SD of 34 degrees
presented for three frames, the shortest presentation used. The
averaged results from the present experiment, for both stimulus
types, are also plotted in that figure. Recall that all cinemato-
grams in that earlier experiment were of the type we've labelled
"random path". Note that performance with presentations of only
three frames in Experiment I was far below that obtained in
Experiment II, with nine frames. Therefore, within just two frames,
observers in Experiment II had not extracted all the necessary
information to determine the direction of motion. So, the identity
of random-path and constant-path stimuli over the first two frames
of presentation cannot explain the lack of performance difference
between the stimuli at nine frames.

The results of Experiment II suggest that individual dot paths
over frames are not being used by the visual system in determining
the direction of global perceived motion. Rather, perceived global
direction seems to depend only upon the distribution of directions

of motion present from one frame to the next. That is, the visual
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system keeps track of the directions created by any one displacement
but does not keep track of the successive movements, over frames, of

individual dots.

DISCUSSION

As stated earlier, one of the major objectives of this research
is to account for our results with a line-element model of direction
discrimination. Before discussing the model, it will be useful to
relate our results to those in the literature and discuss the
implications that these results hold for research in motion
perception.

We have found that direction discrimination of random-dot
cinematograms depends upon certain stimulus dimensions. First,
increasing stimulus bandwidth decreases direction discrimination.
Further, increasing stimulus duration results in an improvement in
discrimination performance. However, in developing its represen-
tation of global direction, the visual system appears to disregard
information about individual dot paths over time.

Williams and Sekuler (1984), using stimuli similar to that used
here, found that global motion in a single direction was always seen
when the range of the uniform direction distribution was less than
or equal to 180 deg. Experiment I showed that, although unidirec-
tional global motion was always perceived, as the bandwidth of the
direction distribution increased so did the discrimination
threshold. The present results suggest that although coherent
global flow can be created by any one of a wide range of bandwidths,
the precise direction seen may not be as predictable. 1In other
words, the directional bandwidth controls the precision with which

the perceived direction matches the mean of the direction distribu-
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tion.

Experiment I also provided some indication of the integrative
power of the visual system in determining direction of motion.
Figure 1 showed that direction discrimination did not change
significantly when the bandwidth of the stimulus was raised from
SD=0.0 to SD=17 deg. This occurred even though the two distri-
butions produced highly distinguishable patterns of movement. The
visual system seems to extract and integrate directional information
just as easily from stimuli containing many different directions
(the stimulus with an SD of 17 deg contained 79 different directions
of motion) as it does with only a single direction present.

But bandwidth was not the only variable that influenced discri-
mination. Stimulus duration also had an impact: as the duration of
the stimuli increased, direction discrimination improved. This
implies some sort of temporal summation in the process that governs
perceived direction of motion. Note that the number of frames
needed to reach asymptotic performance is not the same for all
bandwidths: as bandwidth decreases, fewer frames are needed to
produce asymptotic performance.

Experiment II examined the effect of dot path on discrimina-
tion. The results showed that when direction distributions were
identical, whether the dots took random walks or followed fixed but
different paths, discrimination was unchanged. Previously, Williams
and Sekuler (1984) showed that the global percept of motion does not
depend on the spatial relationship between local motion vectors over
time. Our findings agree with this view: when many vectors of
motion are present, the direction of global motion is determined by

the distribution of directions rather than by the individual dot
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paths.

This result also has some methodological, as well as
theoretical, implications. Some researchers, utilizing random dot
displays, have purposely limited the lifespan of individual dots to
restrict the directional information contained within a single dot
path (e.g. Mather and Moulden, 1980; Mather and Moulden, 1983). The
present result, that individual dot paths do not affect direction
discrimination, suggests that this contrel may not always be
necessary. When the stimulus is comprised of many random dots, the
visual system does not necessarily utilize information about the

conszacutive movements of individual dots.

THEORY
A Line-Element Model of Direction Discrimination

As stated earlier, one of our objectives was to account for
global direction discrimination with a line-element model. Line-
element models have been successful in accounting for several visual
discrimination tasks invelving dimensions such as wavelength and
spatial-frequency (Graham, 1965; Wilson and Gelb, 1984; Wilson and
Regan, 1984; Wilson, 1985). A line-element model has alsoc been
useful for predicting the conditions under which random dot displays
with very different direction distributions would be pmetameric, that
is indistinguishable perceptually despite their considerable
physical differences (Williams gt al., 1984).

Any line-element model has three defining characteristics.
First, it postulates mechanisms whose sensitivity profiles span the
stimulus dimension of interest. For any stimulus, the total
response of a mechanism is the sum of that mechanism's individual

responses to each component of the stimulus. Second, discrimination
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between two stimuli depends upon the change in a mechanism's
vesponse as a result of a change in stimulus components. Finally,
the differences in responses to two stimuli are pooled over all
mechanisms. This implies that the discriminability of two stimuli
is a function of a scalar value (Graham, 196€65).

An example of a line-element model is one Williams et al.
(1984) used to predict which set of discrete directions of motion
would have to be mixed in order to generate a percept that was
indistinguishable from one generated by a stimulus containing a
broad band of directions of motion. This model comprised a set of
direction selective mechanisms, and the response of the model
depended only upon the component directions of the stimulus. Based
on the success of this line-element model and the demonstration that
direction discrimination depends only upon the distribution of
directions, it seemed reasonable to attempt to fit the present data
with the same model.

In the remainder of the discussion, we will describe the basic
structure of the line-element model that we used to account for the
present data. Parameters of the model will be estimated using data
obtained for stimuli with Gaussian distributions of directions
presented for 12 frames. The same parameters will then be used to
account data obtained with different presentation durations and
predict results for stimuli that had uniform, rather than Gaussian,

direction distributions.

Description of the Model
The basic structure and assumptions of the present model are
are the same as those used to account for motion metamers (Williams

et al., 1984). The present model assumes that the full range of
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directions (3600) is spanned by a small number of evenly-spaced,
bandlimited, directionally-selective mechanisms. All mechanisms have
the same Gaussian profile; center-to-center separation between any
two adjacent mechanisms is equal to the half-amplitude half-
bandwidth of a mechanism.

The sensitivity of the ith mechanism, centered at Gi, to

direction of motion 0 is given by

- (0-0: 2
S;(8) = exp!~[(6-81)/n1%*1n2)

(2]
where h is the half-amplitude half-bandwidth of the mechanism. The
response of the ith mechanism to a distribution of directions, D(0),

is given by

360
Ri(D) = X S;(08) * pr{D(0)}, (3]
6=1

where S;(8) is the ith mechanism's sensitivity to direction 6, and
pr{D(0)} is the proportion of dots in distribution D(0) that move in
direction 0.

To predict the discriminability of any two distributions, D(8;)
and D(Oz), with different mean directions, one calculates the
difference, for each mechanism, between its responses to the two

distributions

ARj = Rj{D(6;)} - Rj{D(6;)}. (4]

These differences are then pooled for all the individual mechanisms
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according to a Qth norm rule:
-
M
AR = (I |AR;1Q}1/Q, (51
i=1

where M is the number of mechanisms. AR represents the total
difference between the responses to the two stimuli generated within
the visual system. Note that this method of pooling allows for the
effects of probability summation (Quick,1974).

The variable Q determines the way response differences, ARj,
for each mechanism will be combined. If Q=1, all AR;'s are weighted
equally and the system would be taking the simple sum of all ARy's.
If Q>1, the larger values of ARj are weighted more heavily than
smaller values; if Q=infinity, the model acts as a peak detector,
taking only the single largest value of ARj into account.

In order to relate the predicted values c¢f AR to the data

obtained in Experiment I, we used a psychometric function of the

form:
Y(AR) = 1 - 2-{k*AR)P (6]

where k is equal to the value of 1/AR at Y(AR)=0.50 and P is related
to the slope of the psychometric function.

The model as described above has four free parameters, two of
which we fixed on a priori grounds. Previcus researchers, Wilson
and Gelb (1984), have shown that when Q=2, a line-element model
provides good fits to spatial-frequency discrimination data when the

stimuli are presented under sustajined temporal conditions. The
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temporal modulation of their sustained stimulus was Gaussian with a
1/e time constant of about 250 msec. Following Wilson and Gelb, we
decided to use Q=2 in order to fit the data we obtained at a
duration of 12 frames, since at this duration, thresholds for the
three smallest standard deviations first reached asymptotic levels.
This decision left three free parameters, k, P, and M, the number of
mechanisms.

We set M=12 in accordance with Williams et al. (1984) who found
that a model with 12 mechanisms accounted for metameric relations
between cinematograms that contained a wide range of directions and
cinematograms that contained just a few directions. Having fixed Q
and M, we estimated the optimum values for k and P by a least-mean-
squares fit to Experiment I data presented for 12 frames. Table 2
shows the chi-square (XH goodness-of-fit values obtained for best-
fits to the present data. All X? values are well below the critical

value suggesting that the model fit the data well.

e ————— - ——— — — T —————— - —— - -

Model Fits for Various Durations

The model as described above, provided a satisfactory account
of data obtained for stimuli presented for a long duration, 12
frames, with Q=2. Since the six-, nine-, 12-, and 25-frame
conditions seemed to be grouped together (see Figure 1), the same
parameters used to fit the 12-frame data were also used to fit the
six-, nine-, and 25-frame data. The predicted values along with the
observed data for the six-frame condition, for all observers, are

presented in Figure 5. Those for the nine-frame condition appear in

1




Figure 6 while those for the 25-frame condition appear in Figure 7.
Data are shown by the filled squares and the model by the lines.
For all three duration conditions, the model captures the trend of

the data. Chi-square goodness-of-fit values for the six-, nine-,

and 25-frame data appear in Table 3. The Xz values for all
observers were below the critical value.
Figure 5, 6, and 7 about here
Table 3 about here

Discrimination thresholds obtained at durations of six frames
or greater appear to be grouped together (see Figure 1). However,
for the shortest presentation, three frames, discrimination was
poorer. Since a model of direction discrimination should account
for this effect of duration, we sought to use the present model to
preaict discrimination for this very short stimulus duration.

Previously, Wilson and Gelb (1984) demonstrated an empirical
relation between Q and stimulus duration. They found that a line-
element model with Q=2 predicted spatial-frequency discrimination
when the stimuli were presented in sustained temporal conditions.
When the stimulus was only presented for about 125 msec (transient
condition), Q=2 did not give a good account of the data, but Q=6
did. Since the duration of three frames, in msec, was close to that
of the transient condition described by Wilson and Gelb, we used Q=6
to predict discrimination in the three-frame condition. The values
of k, M, and P remained fixed at the values previously estimated.

Figure 8 compares the model fits to the three-frame data for

all observers, measured for various stimulus standard deviations.
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Data are represented by filled squares and the model calculations by
the lines. Across any row, all the graphs show data for a single
standard deviation; within any column, graphs are for a single
observer. Table 3 lists the X2 values for each observer. Since
there were four standard deviations crossed with six separations,

there were a total of 24 data points per person used in the

calculation of Xz. As can be seen, all but one of the X2 values are
below the critical value. Inspection of Figure 8 shows that
although the general trend of the data is captured by the model, the
fits are not particularly gecod for the largest standard deviation.
The fits would not have been appreciably improved by increasing Q
beyond its set value of six since predictions change little as Q is
raised above this value. This relatively pocr fit to the data can

not be reconciled at this time.

—— . —————— i —— ———— - —— A ——— - —— ——— —— — ——— - — - ———

Discrimination with Uniform Distributions

We next sought to determine whether the model parameters
developed for long-duration stimuli with Gaussian direction distri-
butions (Experiment I) could also account for performance with a
different distribution of directions. So we measured direction
discrimination, for the same observers as before, now using stimuli
with uniform direction distributions. The uniform distributions had
ranges of 1, 31, 91, and 161 deg. As we did earlier with the
Gaussian stimuli, discrimination was measured for six separations
between mean directions, yielding 24 data points per person (separa-

tion values for each uniform distribution are found in Table 1).

74




All stimuli were presented for 12 frames.

Figure 9 compares the predictions of the l2-mechanism model to
data obtained with the four uniform stimuli for all observers. This
is a parameter free fit to the data, the parameters having been
determined in fitting the model to the long-duration Gaussian data.
Data are represented by the filled squares and predictions by the
lines. 1Inspection of the figure shows that qualitatively, the model
captures the trends in the observed data well. Chi-square goodness-

of-fit values were evaluated, for each observer, using all 24 points

2
obtained with the uniform stimuli. The X wvalues for each observer

for the fitted data (Gaussian stimuli) and predicted data (uniform

stimuli) are found in Table 2. For all observers, the Xz values
were well below the critical value. Thus the same parameters that
earlier gave a good account of data with long-duration Gaussian
stimuli, also give a good account of data with long-duration uniform

stimuli.

- ——— . ——————— —— ———— T —— = - — - = — — - —

Summary of Model Results

For all observers, a line-element model with 12 mechanisms and
Q=2, provided a good fit to data oktained with Gaussian direction
distributions presented for 12 frames. Consistent with the idea
that durations of six frames or greater fall into the same group
(see Figure 1), the same parameters that provided good fits for the
12-frame data also provided good fits for the six~, nine-, and 25-

frame data. For the briefest stimuli, three frames, the model
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required that Q=6. Finally, the same parameter set estimated for
Gaussian direction distributions, presented for 12 frames, did a
good job of predicting discrimination with four upiform distri-

butions, presented for 12 frames.

Further Research

This research raises further questions about the ability of the
visual system to integrate direction information. Although we have
considered discrimination obtained with durations of six frames or
greater as a group, it is apparent that for stimuli with large
bandwidths there is a systematic change in discrimination with
duration (see Figure 1). The present model, though adequate as a
first approximation of the integration process, does not account for
this bandwidth-duration interaction. Further research is needed to
refine the model to account for this effect.

One aspect that has not been touched on here is the integration
of information betwee:s the two eyes. 1In the present experiments,
all stimuli were presented monocularly. An experiment that could
help establish the locus of the integration would be to present par*t
of the distribution of directions to each eye and measure the
perceived direction of motion. By varying the relative proportion
of the overall distribution shown to each eve and its directional
content, we could establish how the visual system integrates motion
information between the two eyes and how dissimilar the two stimuli
must be before the integration system fails and rivalry results.

Another question of interest is whether color has an effect on
the integration of direction information. Recent physiological
research has shown that the cells in the Medial Temporal area (MT),

which are particularly responsive to complex moving stimuli (Newsome
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et al, 1986), seem little influenced by color (Livingstone and
Hubel, 1987). 1f MT neurons were involved in the detection and
integration of direction information, then one could psycho-
physically test whether the color of the components of the moving
stimuli affect the perceived direction of motion.

A final question concerns the power of the system to integrate
various directions. In particular, how similar must component
directions of a stimulus be in order for integration to occur? We
have shown that people can discriminate the global direction of
motion produced by a distribution of directions, with a high degree
of accuracy, even when the bandwidth is quite large. However, we
also know that if two very different directions of motion are
presented simultaneously, the observer perceives both directions of
motion but with the separation between them exaggerated (Marshak and
Sekuler, 1979). Stimuli similar to ours could be used to examine
the continuum between perceiving a single global direction of metion
(integration) and simultaneously perceiving several different
separate directions of motion (segregation). To explore this
continuum, one could present stimuli containing many different
directions, sampled at various spacings, and measure whether

observers perceived a single global direction.

CONCLUSIONS
To summarize the findings and implications of the present
studies: Increasing stimulus bandwidth decreases direction discrim-
ination. 1Increasing stimulus duration results in an improvement in
discrimination performance. In developing its representation of

global direction, the visual system appears to disregard information
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about individual dot paths. A line-element model with 12 mechanisms
accounts for direction discrimination for a wide variety of stimulus
bandwidths and durations. The model required a systematic chan7ve in
Q, the parameter that reflects the mode of pooling across mechan-
isms, to account for the change in discrimination with duration. A
Q of 6 was required for the shortest duration while a Q of 2 was
reguired for longer durations. A possible mechanistic way to
interpret the change in Q with duration is that as duration
decreases, fewer of the mechanisms' responses enter into the pooled,

overall response.

Acknowledgment-- This research was supported by a grant from the ‘
U.S. Air Force Office of Scientific Research, AFOSR 85-0370. |

i3




REFERENCES
Adelson, E. H. and Movshon, J. A. (1982) Phenomenal coherence of

moving gratings, Nature, 300, 523—525.

Graham, C. H. (1965) Color: data and theories. In Vision ang

Visual Perception (C.H. Graham, et al, ed.), pp.414-451, Wiley, New
York.

Livingstone, M. and Hubel, D. (1987) Psychophysical evidence for
separate channels for the perception of form, color, movement, and

depth. Journal of Neuroscience 7, 3416-3468.

Mather, G. and Moulden, B. (1980) A simultaneous shift in
apparent direction: further evidence for a "distribution shift*®
model of direction coding. Quarterly Journal of Experimental
Esychology 32, 325-333.

Marshak, W. and Sekuler, R. (197%9) Mutual repulsion between moving

visual targets. Science 205, 1393-1401.

Mather, G. and Moulden, B. (1983) Thresholds for movement

direction: two directions are less detectable than one.

Quarterly Journal of Experimental Psychology 35, 513-518.

Ncwsome, W,, Mikami, A., and Wurtz, R. (1986) Motion selectivity in

macaque visual cortex. III. psychophysics and physiology of

apparent motion. Journal of Neurophysiology 55, 1340-1351.

Ll

e ——




Quick, R. F. (1974) A vector-magnitude model for contrast

detection., XKyberpetik 16, 65-67.

Williams, D. W. and Sekuler, R. (1984) Coherent global motion

percepts from stochastic local motions. Yision Research 24, 55-62.

Williams, D. W., Tweten, S., and Sekuler, R. (1984) Using metamers

to explore motion perception. Supplement to Investigative
Ophthalmology and Visual Science 235, 14.

Wilson, H. R. (1985) Discrimination of contour curvature: data and

theory. Jourpal of the Optical Society of Amerxica A 2, 1191-1198.

Wilson, H. R. and Gelb, D. J. (1984) Modified line-element theory

for spatial-frequency and width discrimination. Journal of the

Optical Society of America A 1, 124-131.

Wilseon, H. R. and Regan, D. (1984) Spatial-frequency adaptation

and grating discrimination: predictions of a line-element model.

Journal of the Optical Society of America A 1, 1091-1096.

§s




FIGURE CAPTIONS

Fig.l Discrimination thresholds (see text for definition) for five
durations, averaged over observers, plotted as a function of stimulus
distribution standard deviation (SD). Notice that at all SDs, the
three~frame thresholds are higher than all others. At the two
smallest stimulus SDs, thresholds are identical for durations of six
frames or more. For these same durations, thresholds diverge at
larger SDs. At the two largest SDs, there seems to be a systematic
change in thresholds with duration; thresholds decrease as duration

increases.

Fig.2 Discrimination thresholds (see text for definition) for four
stimulus distribution standard deviations, averaged over observers,
plotted as a function of duration. Note that for the two smallest
distribution SDs (filled and unfilled squares), thresholds have

reached an asymptotic minimum after a duration of only six frames.

Fig.3 Two types of individual dot motion, random-path (A) and fixed-
path (B). Note that only two directions of local motion are present
in both A and B and that the vector-sum of the directions is the same

in both cases.

Fig.4 Percent correct judgments as a function of mean direction
separation. Data are averaged over all observers. (A) Data are
presented for three dot-path conditions. BAverage standard error bars
are provided in the legend for each condition. Notiée that the three

different conditions yield quite similar results. (B) Data, averaged
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over the three dot-path conditions, are presented with data from
Experiment I. These Experiment I data were obtained using the same
stimulus bandwidth but presented for only three frames. Standard
error bars are provided on each curve. Note that the three-frame
data from Experiment I are far below the averaged data frcm

Experiment II

Fig.5 Data for four stimuli with Gaussian distributions of
directions with different standard deviations (SD), presented for a
duration of six frames. Data are represented by the filled sguares
while the solid curves represent fits from a l12-mechanism line-
element model with Q=2. Each row of graphs represents data for a
single stimulus distribution SD; each column provides a single
observer's data. Note that the slope of the data gets shallcwer as
the distribution SD increases and that the model fits follow this

trend of the data.

Fig.6 As in Figure 5, but for a duration of nine frames.

Fig.7 As in Figurxe 5, but for a duration of 25 frames.

Fig.8 Data for four stimuli with Gaussian distributions of
directions with different standard deviations (SD), presented for a
duration of three frames. Data are represented by the filled squares
while the solid curves represent fits from a l2-mechanism line-

element model with Q=6.

Fig.9 Data for four bandwidths of uniform stimuli presented for 12

frames. Data are represented by the filled squares while the solid

7
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curves represent predictions from a 12-mechanism line-element model
with Q=2., Model parameters were evaluated from fitting data obtained
for four stimuli with different Gaussian distribution standard
deviations presented for 12 frames. Each row of graphs represents
data for a single stimulus bandwidth; each column provides a single
observer's data. As in the previous figures, the slope of the data
gets shallower as the bandwidth increases; this trend is captured

well by the model predictions.
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Footnotes

1. Because of the discrete nature of the display, it was not
possible to present a continuum of directions. We approximated a

Gaussian distribution by sampling a one degree intervals.

2. The Gaussian distribution with a standard deviation of 0.0 deg
signifies motion in which all dots moved in parallel paths in the

same direction.

3. The evaluation of discrimination thresholds produced two
extremely large values that were substantially different from the
others. These extreme values were due to a lack of monotonicity in
two observers' data for a particular bandwidth-duration combinatiocn.
These two values were excluded from the ANOVA conducted on the

bandwidth and duration data.
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Table 1. Bandwidths and mean directions of stimuli with Gaussian and

uniform direction distributions.

Standard Deviations of -—— Mean Directions
—Gaussian Distributions ~~ Standard =~~~ =~ Comparison =
0.0 deg 90 deg 91, 92, 93, 94, 95, 9¢
(unitary motion) (upwards)
17 deg 90 deg 91, 92, 94, 95, %6, 98
34 deg 90 deg 92, 94, 95, %6, 98, 100
51 deg 90 deg 92, 95, 97, 99, 102, 105
Ranges of Mean Direcrions
—DUniform Distxibutions  Standard = Comparison
1 deg 90 deg 91, %2, 93, 94, 95, 9¢
(unitary motion) (upwards)
31 deg 90 deg 91, 92, 93, 94, 95, 96
91 deg 90 deg 91, 92, 93, 96, 99, 102
161 deg 90 deg 92, 94, 95, 100, 105, 10
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Table 2. Chi-square values of model fits to four Gaussian stimuli

and predictions for four uniform stimuli presented for 12 frames.

ol G {an Dj {but i Unif D {but ;

cC 8.35
Cp 7.73
DA 4.88
JW 12.93
SW 4.16
o » x2
critical .95 33.9
(df=22)

24.92

9.21

17.38

36.4
(df=24)

2
Note: Values underlined exceed critical X .
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Table 3. Chi-square values of model fits to four Gaussian stimuli

presented for durations of three, six, nine, and 25 frames.

cC 27.62 12.93 11.35 13.03
cp 18.47 10.72 5.15 10.65
DA 24.00 14.66 7.03 5.78
JW 50.17 19.10 7.78 23.40
Sw 18.47 15.64 8.35 3.87
2
critical X 95 35.2 36.4 36.4 36.4
(df=23) (df=24) (df=24) (df=24)

2
Note: Values uynderlined exceed critical X .
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Project Four:

Reaction times to change in speed
and direction of motion

Robert Sekuler, Ehtibar Dzhafarov,
and Juri Allik




INTRODUCTION

Dzhafarov and Allik proposed the Local Dispersion Model (LD-model) as a
framework for interpreting detectability of planar rigid motion with an
arbitrary time-position function (Dzhafarov et al, 1981, Dzhafarov, 1982;
Dzhatfarov et al, 1983; Dzhafarov and Alltk, 1984). Predictions from the LD-
model were consistent with data on kinematic thresholds and psychometric
functions. Of particular importance for the present work, Allik and Dzhafarov
(1984) found good quantitative agreement between their model and reaction
times (RTs) to motion onset. Consistent with empiricai findings (Ball and
Sekuler, 1980; Tynan and Sekuler, 1982), the mode!l predicted longer RTs to
onset of slow motion than to fast motion.

in those studies of RT to motion onset, after some rest period the stimulus
started to move with constant velocity . Now we have measured RTs in a more
general situation: a target moves at a constant velocity for some random
time, after which its velocity abruptly changes to another constant value.
Observers must react as soon as the change in velocity is noticed. Our aim was
to develop a theory that would account for the dependence of RT on the
relationship between the two velocities. Figure 1 shows the various types of
kinematic functions we used. The two phases of motion always had the same,
horizontal, orientation; either they differed in speed (panels a and b), or they
were in opposite directions (panel ). For each pair of velocities we analyzed
mean RTs and standard deviations of RTs. Note, in Figure 1, that the first
velocity of a pair sometimes took a zero value (panel al1); in such a case the
change of velocity 1s identical to the anset of uniform motion, the condition
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used by Tynan and Sekuler (13982).

[Insert Figure 1 about here]

Dzhafarov and Allik originally designed the LD-model to explain how the
visual system distinguishes between a target’s motion and non-motion. The
model did not deal with detection of change in a particular parameter of
motion, €g a change In direction or a change in speed. However, as we will
show in this paper, 2 simple modification enables the LD-model to predict
detectability of changes in velocity.

we will also show that one alternative model for RT to motion onset (Ball
and Sekuler, 1980; Tynan and Sekuler, 1982; Allik & Dzhafarov, 1984) fails in
the general case of velocity change. This alternative model asserts that
reactions to motion onset are initiated when the target has moved through
some constant, or critical, distance. The model is therefore referred to as a
Constant Distance Model (CD-model).

In testing the models -- Local Dispersion and Constant Distance types -- we
were primartly interested in quantitative predictions, and in the plausibility of
their parameters’ optimal values. Since there fs theoretical interest in the
way vision encodes direction and speed (for review: Sekuler, 1975; Nakayama,
1985), we also wanted to know whether a single framework could handle RTs to
direction reversals as well as RTs to unidirectional speed changes.

Before turning to the details of our empirical research and theoretical
analysis, consider a general postulate common to all theoretical treatments of
RTs. The postulate 1S that reaction times are comprised of two additive
components. One component, the decision time (tp) Is @ function of stimulus
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parameters such as velocity; the other component is residual time (tg), the
minimum time an observer needs to execute the required response. So, all

models considered here agree that
RT =tp* tg (]

The various models differ only in their interpretations of the tp component.

The rest of the paper is organized as foliows. First, we briefly discuss the
LD-model and the CD-model as formulated for motion detection and for RTs to
motion onset. There are two reasons for this discussion. First, these modeis
are prototypes that we are going to transfer to the domain of velocity change;
second, the onset of uniform motion is a particular case of velocity change,
namely when the first of the two velocities is zero. We shall see that this
subset of data forms a strong basis for evaluating the models. After the
discussion of the original models, we present some plausible modifications for
the situation investigated in our experiments. All the modeis will be
formulated in strictly psychophysical terms: the characteristics of motion on
which the decision is based, and the decision rule itself. After the modeis have
been presented, experimental results will be described, and confronted by the
models. Finally, the Discussion section considers one biologically plausible
system of mechanisms able to extract the required characteristics from the
stimulus.

LD-MODEL, CD-MODEL, AND PROPOSITION OF IDENTITY

The Local Dispersion Model (LD-model) has been described in more detail
elsewhere (Dzhafarov, 1982; Dzhafarov and Allik, 1984; Dzhafarov ef
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al/.,1983). Consider a two-dimensional luminance profile, L(x,y), whose
position changes over time according to some arbitrary kinematic function,
K(L)=<kyu(t)ky(t)>. The LD-model identifies two separable factors that limit
motion detectability. One factor ts spatio-temporal luminance fusion (or
smearing) along the trajectory of motion; the other factor is a particular
characteristic of the kinematic function, its “local dispersion”.

Luminance fusion can take place 1T the kinematic function, k(t), 15 a high-
frequency oscillation, and/or if the moving profile, L(xy), has a repetitive
structure. In either case we have high-frequency luminance flicker at every
point of the motion trajectory. Adjacent flickers can fuse in a non-independent
fashion because of spatio-temporal luminance integration in the visual system
and in the display device. Whether the complete fusion takes place depends on
both the kinematic function and the moving profile. If fusion is only partial, or
1t does not occur at all (as with the leading edge of a unidirectionally moving
contour), then detectability of motion depends on the kinematic function only.

The model asserts that the detectability value is given by a moving average
over the moving variance of the kinematic function, a value termed Local
: Dispersion (LD).

bty t
ow=1/2td [ | [ ekepkepRadt,a, (2)
t-T to‘t to"T

where E is the Euclidean distance, t is the time span of the moving variance
(over the stimulus' kinematic function), T is the time span of the moving
average (over the moving variance). Note that the term “local” in the name of
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the model has a temporal rather than a spatial meaning: the LD-value is defined
at every moment of time.

Equation 2 means simply that motion detectability is proportional to an
average dispersion, or scatter, of a target's temporally close spatial positions.
The local dispersion reflects the variance of spatial positions measured within
a travelling temporal window, [ty- 1, to), and assigned to every moment to. At
any moment, t, the LD-value {s the mean of the moving variance between times
t and t-T. Thus If T {s zero, motion detectability is proportional to the
maximal value of moving variance; If T is infinitely large, detectability
depends on the grand mean of all variance values. Zero and Infinity form the
poles between which the actual value of T lies. Empirically, the ratio T/t has
been found to be a constant, 2, for all the data known to be relevant, though 1
does vary with the display conditions and from one observer to the next. The ¢
is close to 0.5 sec for foveal absolute motion (/e one without a stationary
reference near the motion). Figure 2 illustrates one of the computational
algorithms that are equivalent to equation [2]. It will be discussed in more
detatl in Discussion.

(insert Figure 2 about here]

Equation [2] represents LD as a particular characteristic, or feature of the
stimulus’ kinematic function; as a result it has the same ontological status as
speed, distance, or acceleration. However the definition of a stimulus
parameter on which the subjects might base their choice between “motion™ and
“no motion”, constitutes only the first part of a complete psychophysical model.

in the second part one should specify the decision rule for the particular

/06




expertmental task. Thus, for experiments with kinematic thresholds, like
minimum amplitudes of oscillatory motions, one should assume that the motion
is detected when the LD-value exceeds some critical level, C2, where C is a
distance-dimensioned parameter (notice that the LD is measured in squared
distance units, g min?).

In using the LD-mode! to predict RTs one needs an assumption that links
values of LD to the actual initiation of a reaction. Here again the simplest
assumption is that a decision to react is made as soon as LD exceeds some
critical value. In applying the LD-model to reaction times elicited by onset of
motion, Alltk and Dzhafarov (1984) showed that decisfon time, tp, can be found
from the equatfon:

V2tp4(1-3tp/51/7(12T1) = C2 (3]

V is the motion velocity; T, 1, and C have the same meaning as above. The tp in
equation [3} can be shown to be a decreasing function of V.

For RT experiments the LD-mode] gave numeric values of T, 1, and C that
were similar to the values needed to account for kinematic thresholds and
psychometric functfons. This similarity is important. It means that in a
reaction time experiment an observer actually obeys the experimenter's
Instructions, inftiating reaction as soon as motion 1s gelected. Putting it In
other words, the similarity of parameters across experimental situations
implies that an observer in a reaction time experiment uses the same criterion
that an observer would use when kinematic thresholds were being measured.
This implication, which we call the Aroposition of /dentity, suggests that
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reaction time experiments should be considered as a one class of motion
detectability experiment. Although they deal with motions well above threshold
they reveal the same processes as do other types of experiments on motion
detectability.

Only one other model has been applied to data on RT to motion onset, the
Constant Distance (CD) Mode! (Ball and Sekuler, 1980; Tynan and Sekuler,
1982). It states that reactions to motion onset are initiated when the target
has moved through some critical distance. When the motion has a constant
velocity, V, the decision time, tp, can be found from the simple formula

tp=a/Vv {4]

where A denotes the critical distance.

It's hard to formulate the Proposition of identity for the CD-model because
the model itself fails with data on kinematic thresholds. Except for oscillatory
motion in a middle-frequency range (1-7 Hz), amplitude thresholds are not
constant, and even over this limited range the “constant” varies with type of
oscilliation (Dzhafarov ef 2/, 1981). Nevertheless, some authors insist that the
constant displacement rule does hold for very brief unidirectional motions
(Cohen and Bonnet, 1972; Johnson and Leibowitz, 1976; Bonnet, 1977, 1982) . If
this suggestion were even approximately true, then the greatest precision in
estimating critical displacement would be reached in the briefest possible
motion, namely, an mstantaneous shift of position. Then the Proposition of
(dentity for the CD model would reduce to the assumption that the parameter 4,
in equation (4] for reaction time, is close to the threshold for position shift.
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THREE MODELS FOR RT TO VELOCITY CHANGE

We have described how the LD-model and the CD-model can account for RTs
to motion onset. When uniform motion follows a rest period the solution is
given by equations [3] and [4], in combination with the assumption expressed by
equation [1]. We will now consider how these formulations can be modified for
the general case of change from one velocity, V,, to another, V,. Recall that v,
is the velocity of the first phase of motion that lasts for some random period
and then abruptly changes to the second phase, with velocity V,. The two
motion phases have the same orientation, but different absolute vaiues (speed)
or signs (direction). Formally speaking, we seek to express RT as a function of
Vy,V,>. From the original models we know a part of this function, the
dependence of RT on pairs of the type <0,V>.

One simple solution suggests itself: reduce the general problem to the
particular case for which the solution is already known. Specifically, assume
that detection of velocity change, <Vq,V,>, 1s structurally equivalent to
detection of onset in the derived motion, <O,V,-Vy. By structurally
equivalent we mean identical except for the values‘ of the models’ free
parameters. Applying this scheme to both CD-model and LD-model, we get
generalizations of equatfons [3] and (4]

For the Constant Distance Model:

For the Local Dispersion model:
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IVy=Vgl2tp4(1-3tp/S1/(12T1) = C(V)? [6)

For both equations, decision time depends upon an eguivalent velocity
rather than upon a directly measurable one. Therefore, as a reminder, we'll
label the resulting models with the term “equivalent.” So equation (5]
describes the eguivalent Constant Distance Model (eCD-model); equation [6)
describes the eguivalent Local Dispersion Mode! (eLD-model). The sign of V,
can be always taken as positive, whereas the sign of V, 1s positive when the
two phases are unidirectional, and negative when they have opposite directions.

In both models, o and C are functions of V,, whereas tg, as usual, 1s an
independent random variable. Although it is not logically necessary, we assume
that the parameters T and t in the LD-model are unmodified by V. Moreover we
will assume that the values of T and t are the same as in motion detection
experiments. Note that the second assumption 1S derivable from the first
assumption together with the Proposition of Identity.

There is an alternative, perhaps more natural, way to generalize the Local
Dispersion Mode! to the case of velocity change. Provided the first phase of
<Vq,Vy> lasts long enough (=T+1, estimated as 1.5 sec), LD will stabilize at
LDy = Vy21/12 (Alltk & Dzhafarov, 1984). Then, as velocity changes from Vy, to
V,, the value of LD also will change. We can postulate that velocity change
will be detected when the difference between the current LD-value and the
init1al level LD0 reaches some critical value. The critical value would depend,

in general, on the LD, or, equivalently, on Vo:

| LD(tp) - LD, | = C(V,)? (7]
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The aifference LD(tp) - LD, 1s given explicitly in the following formula:

LD(tp) - LD, =
(V=Vltp3Vor/6 + (V1 -2V )tp/ 12 = (V4-V)tp2/(200)/ Tt (8)

Here agatn, V( Is taken to be positive, and V, is positive if it and V are in
the same direction, and negative otherwise. Unlike the alternative version of
LD-mode! discussed earlier (the eLD-model), the local dispersion model in
equation [8] can be applied directly to the stimulus  actual, untransformed
kinematic function The only modification in the model is in the decision rule,
which is a generalized version of one originally proposed by Allik and
Dzhafarov. Therefore we can refer to a generg/ized Local Dispersion, or gLD,
model.

EXPERIMENT AL PROCEDURE

The display consisted of 200 spatially-random, bright dots presented under
computer control on a large, dim x-y cathode ray tube screen. The dots were 6
min in diameter, and dot-background contrast was set at 4-5 times threshold.
The background luminance was about 1.5 cd/m2. At the start of each trial, the
dots appeared and began moving inside 3 16 deg dlameter circular aperture
(see Figure 1). The dots moved horizontally In fixed spatial phase along
paraliel paths. when a dot reached the edge of the display it wrapped around,
reappearing sometime later at the opposite edge. The dots’ velocity was
controlled by the size of steps, or displacements, from one frame to the next,
keeping frame rate constant at 100 HZ. A new set of spatially random dots was
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generated on each trial.

The experiment consisted of 35 different conditions, each corresponding to
one velocity pair, <V4,Vy>. They were tested one at a time in blocks of SO
trials. Over the entire study, each condition was tested on three different
occasions, giving in total 130 trials per pair of velocities. The duration of Vv,
or stimulus foreperiod, varied according to a uniform random distribution
ranging from 1 to 2 seconds. Trials were initiated by the observer.

In thirty conditions, movement during both phases was in a rightward
direction. In all these conditions, the subject reacted to a change in speed only
(Figure 1a,b). Velocity pairs were chosen as pairs from the set of 0 (stationary
dots), 1, 2, 4, 8 and 16 deg/sec, with the constraint that the two velocities in
a condition could not be the same.

in another five conditions, speeds during both phases were the same. in
these conditions, rightward motion during the foreperiod changed abruptly to
leftward motion, with no change in speed (Figure ic). In all these conditions,
the subject reacted to a change in dgirect/on only. Speeds were 1,2, 4,8 2xd
16 deg/sec.

In addition we carried out an auxiliary experiment in order to find out
whether any of the obtained results could be specifically associated with our
choice of the number of dots In the display, 200. This experiment consisted of
39 different conditions, each corresponding to one of 13 velocity pairs,
<V,Vy>, and one of three dot densities: 50, 100, or 200 dots per screen. A
subset of the velocity pairs used in the main experiment was used here: <0, 1>,
0,9, <0,16>, <1,8> 2,15, <405, <4,16>, <4,-4;, <8,4, <16,0>, <16,1>,
<16,2>, <16,-16>, where the minus sign indtcates leftward motion. In all other
respects the auxtliary experiment was identical to the main one.
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During analysis of the data, all responses less than 100 ms or greater than
1000 ms were discarded, as premature or indicative of the observer's
momentary distraction. The number of discarded trials was fairly constant for
all congitions, and constituted less than S% of trials. Remaining trials were
used to caiculate arithmetic means and standard deviations of RTs for each
condition.

One of the observers in the main experiment was an author of this report
(RWS), the other observer (JF) was nalve with respect to the purposes of the
study. A third observer (JLM), also nafve, served in the auxiliary experiment.

RESULTS

Figures 3 and 5 show the mean RTs for subjects JF and RWS, respectively.
Figures 4 and 6 show corresponding standard deviations of RTs. All panels in
every figure contatn full set of data, for all <V,,Vy> pairs, but in each panel the
data corresponding to one value of V, are “highlighted” (shown by squares). The
data are plotted against two abscissae. The lower abscissa represents a
measure of similarity between V, and V,, namely l/IV,-Volo's. arrayed
linearly. Corresponding values of the difference |V,-V,| are shown in the upper
abscissa. The square-root operation in our similarity measure has been chosen
to linearize the theoretical curves produced by one of the models, as discussed
below.

[Insert Figure 3 about here]
[Insert Figure 4 about here]
(Insert Figure S about here]
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{insert Figure 6 about here]

One can notice the following main characteristics of the data.

(1) For a fixed Vo, means and standard deviations of the RTs both decrease
as the difference between Vi and Vo increases.

(2) For a fixed value of [V,-Vyl , RT means and standard deviations
Increase as the fore-speed, Vo, increases from 4 to 16 deg/sec. With slower
forespeeds (between O and 4 deg/s) no such trend is discernible.

(3) In ordering both means and standard deviations of RTs, only absolute
value of velocity difference, |V,-V,l, matters, irrespective of whether it
represents velocity increment, velocity decrement, or direction reversal. Thus,
means and standard deviations of RTs for the velocity pairs <4,0> and <4,8> are
about the same, and fall between the corresponding RT moments for <4,16> and
<4,1> (difference in velocities for the first two pairs is 4, for the second 12,
and for the third 3 deg/s). In the direction reversal condition [V,-Vl 1S equal to
2V, For example, the difference in velocities for the pair <16,-16> is equal to
32 deg/s. Therefore, in compliance with the general pattern, the first two
moments of the corresponding RT should be less than those for the pair <16,0>.

[Insert Figure 7 about here]

The scattergram in Figure 7 presents the results of the auxiliary experiment
in which we varied the number of dots in the display (only mean RTs were
analyzed for this experiment). The abscissa represents the mean RTs found
with 200 dots in the display for various pairs of <V,,V,>. Against each mean RT
obtained with 200 dots we have piotted the mean RT from the same <V, V>
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condition obtained with 50 dots (crosses) and 100 dots (squares). The diagonal
line represents the expected loci of data points if mean RT did not differ at all
with number of dots in the display. The Friedman rank sums test shows that the
difference between the 200 and 100 dot displays, on one hand, and the 50 dot
display, on the other is significant (0.025<p<0.03). However, it is obvious from
the figure that the fourfold change in dot density has a remarkably small effect
on mean RT. Therefore our principle results are probably not restricted to the
particular number of moving dots used in the main experiment.

Notice that characteristics (1) - (3) of the data are not sufficient to derive
ordinal-scale predictions about velocity pairs with different values of both V
and IV,-V,l. A quantitative, modei-bound analysis is needed for this purpose;
such an analysis follows.

ANALYSIS

COMPUTATIONAL FORMULAS FOR E[RT] AND SIRT].  Formulas (S]-{8] (in
combination with formula [1]) do not by themselves allow one to compute RT
means and standard deviations. The formulas contain random variables with
unknown distributions, tg and A(Vy)s (in the eCD-model) or C(V4)s (In both
versions of LD-model). For every combination of these parameters' values one
can compute, using the formulas, a single value of RT. What we need Instead 1s
a theoretical prediction of RTs' first two moments, expected value, E(RT], and
standard deviation, SIRT], for each pair <V,,V>. Since all models treat RT as a
sum of decision time, tp, and residual time, tg, the task i1s reduced to finding
the first two moments for the summands, Eltgl, Sltg), and Sltpls and Eltpls, for
each pair of velocities, <Vy,V,>.
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E[RT(VO;VI)] = E[tD(Vo,V|)] + E[tR]
(9]
SIRT(V,,V,)] = ( Sltp(Vo,Vni2 + S[tgl2)172

The derivation of expressions for Eltp] and Sltp! in the eCD-model is
straightforward. However, it's harder to derive exact computational formulas
for tp in the eLD- and g.D-models. These derivations require explicit
assumptions about the distribution of parameter C. Because this would add
extra free parameters, we wanted to avoid making such assumptions. Instead,
we used approximate rather than exact formulas for the eLD- and gLD-mode).

The required computational formulas for all the models are given in the
Appendix. To account for mean RTs one has to adjust: (1) the value of E[tg]; and
(2) a measure of central tendency of distance-dimensioned parameters (A or C)
corresponding to each vaiue of V. To account for standard deviation of RTs one
has to adjust: (1) the value of S[tg]; and (2) a measure of variability of
distance-dimensioned parameters (A or C) for each value of V,. As we see, the
number and the interpretation of the free parameters are identical in the three
models. However the measures of central tendency and variability in these
models are different. They are shown in Table Al of the Appendix.

FITTING THE MODELS. There eems to be no conventional statistical procedure to
estimate goodness of fit for both means and standard deviations, uniess one
makes explicit assumptions concerning the distributions of RTs. As explained
before, we wanted to avoid assumptions that would add free parameters. Our
aim was to determine whether one of the three models provided an account of
the data that was substantially better than offered by the other models. This
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The values are given in percentage terms in accordance with formula [10]
Thus, 2.52% means that, on average, the deviation of E[RT] predicted by the
eLD-model from the empirical means makes 2.52% of the empirical values. For
both means and standard deviations, the models can be ordered according to
goodness-of-fit, eCD>eLD>gLD. However the differences are so small that no
model can be rejected. For the means, each model yields values of MSRD less
than 5%, obviously a very good fit. If 5% is acceptable for means, then the MSRD
values provided by the models for standard deviations are comparably good.*

The small differences in vaiues of fit make one wonder whether the
obtained ordering of the models --eCD>eLD>gLD-~ is replicable. In other words,
can one expect to get the same ordering if the experiment is repeated? The
results of the auxiliary experiment, with three different dot densities, suggest
that the answer should be negative. The number of velocity pairs used in this
experiment was rather small, and only one value of V, was paired with V,
equal to 1, 2, and 8 deg/s. However the remaining three values of Vg, 0, 4, and
16 deg/s, were paired with more than one value of V, each, and these pairs can
be used for model fitting. The results are presented in the bottom of Table 1.

* This can be shown as follows. The experiment was carried out in three blacks esch containing about
S0 trials per <Yo, V(> pair. The MSRD of the three sets of within-block meens from the set of grand
means s 4.19% for RS end 3.37% for JF, both values below S®. One can conclude that the three
blocks of meesurements per condition are mutually consistent, and that their consistency is
comparable with the MSRDs for E[RT] versus mesn. Then it is natural to compare the MSRDs for
S{RT] versus st. dev. with the leve! of consistency of the within-block st. dev.s. The latter s calculated
8s MSRD of the three sets of within-block st. dev.s from the set of grand st. dev.s. The level of
consistency is 30.11% for RS and 56.76% for JF, which is well above the MSRDs provided by the
three models. This informal considerstion makes it obvious thet the variability of st. dev.s is of &
greeter order of magnitude then the variability of meens. If SE is acceptance leve! for meens, then
258 for standerd devistions seems to be 8 very conservative estimate.
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encouraged us to use a statistic whose theoretical distribution was not known.
This statistic is the relative deviation, [predicted-observed|/observed, which
expresses differences between predicted and observed values as a percentage
of the observed value. This dimensioniess measure can be used for both means
and standard deviations, and seems to be a natural choice for inherently
positive data, such as RTs. For the central tendency of relative deviations we
used Mean Squared Relative Deviation, MSRD:

MSRD = {3[ (predicted - observed)/observed 12/n}/2%100%  [10]

where summation is over all data points, that is for all n pairs, <v°, V,>‘
“Predicted” and “observed” should be replaced with either E[RT] and mean, or
S[RT) and empirical standard deviation.

Theoretical predictions of the eLD-model are shown in Figures 3-6 by solid
lines. The chosen format of the x-axis makes the predictions linear for mean
RTs, and, in the range of velocity differences used, almost linear for standard
deviations. The values of free parameters at which the minimum MSRD fis
achieved are given for all three modeis In the legends to Figures 3-6. in order
not to impair readability we did not present the theoretical predictions of the
two other models in the same plots, and presenting them separately would have
taken too much space. The reason for singling out the eLD-model will be
explained below. However it 15 not based on the values of minimum MSRD
achieved by each model, as one can see from Table 1.

[Insert Table | about here)
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when RTs were averaged over the three dot densities the ordering of the models
was eLD>eCD>gLD. If the RTs corresponding to different numbers of dots were
fitted separately, so that A and C are functions of both Vg and dot density, then
the resulting ordering was eLD>gLD>eCD. As we see, there is no consistent
pattern in ordering of the models according to goodness-of-fit. In addition, the
small differences between the MSRD values are at least in part due to the
technical fact that we use precise computational formulas for the eCD-mode),
but only approximate formulas for the variants of the LD-model.

DIRECTION CHANGES VS. SPEED CHANGES. Figures 3-6 corroborate the ordinal
characteristic of the data that we mentioned earlier: there were no qualitative
differences between responses to 1800 reversal of direction, on one hand, and
responses to change in speed only, on the other. First, we verified that the
fitted values of parameters were determined mainly by the unidirectional
velocity pairs, rather than by the pairs with direction reversal; ignoring data
involving a change in direction, and fitting models only to speed change data,
produces very little change in the optimal vaiues of models' parameters. This is
not surprising since there were six times as many unidirectional velocity pairs
as those with direction reversal. If RTs to direction reversals formed a
qualitatively separate group they would deviate from predicted values more
than do the RTs to speed change. This obviously 1s not the case.

The homogeneity of data, particularly the homogeneity of data for both
speed changes and direction reversals, bears on the the general problem of
velocity encoding in the visual system. However the data's homogeneity has an
additional meaning within the framework of the LD-models. Unlike the case of
unidirectional speed changes, direction reversals cause any dot to pass twice
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over each spatial position along its trajectory. For spatial positions near the
turn point this retracing leads to some luminance blur that could limit the
applicabflity of the formulas based on Kinematic function only (see the
description of the LD-model above). The homogeneity of the ¢ata shows that the
amount of blur in direction reversals was negligibly small.

BEST-FITTING PARAMETER YALUES. Since none of the models could be dismissed
on the grounds of poor fit, we gave extra attention to the plausibility of the
optimal values of the models’ parameters.

The estimates of the time-dimensioned parameters, E[tg} and Sftg), are
given in the legends to Figures 3-6. For the eLD-model these values are shown
as the iIntercept points of the vertical axes with the theoretical curves
(corresponding to infinitely large velocity difference, or zero closeness). The
estimates of tp given by the eCD-model, 2145 ¢ 255 ms (RWS) and 209 ¢ 26.5
ms (JF), seem somewhat too high for residual times.*™ They are considerably
higher than values reported for simple RT to long large high-intensity light
flashes (Teichner and Krebs, 1972).

Estimates for the displacement-dimensioned parameters, C and A, are also
given in the legends to Figures 3-6. Note that different measures of central
tendency and variability were used for different models (see Table Al in
Appendix 1). For both means and standard deviation the greater the value of the
displacement-dimensioned parameters, the greater the predicted rate of data
decrease as the velocity difference increases. |

Of primary interest for us here are the values corresponding to V,=0, the
particular case when the change of velocity fs the onset of a uniform motion. If

** Hers, for compactness of presentation, we use the format E{tg)2S{tg]. This should not be confused
with enything tike “confidence intervals™ for E[tg). The E{tp) and S{tp] are independent estimates of
two different parameters of 8 hypothetical distribution.
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and only if the Proposition of Identity holds, RTs to motion onset can be
considered as a particular paradigm of motton detection. Therefore by analyzing
the values of C(0) and A(Q) one can find out whether a particular mode! is
consistent with the Proposition of Identity, 7e whether these values are close
to estimates of C and A derived from experiments on foveal absolute motion
detectability. Recollect that [C(0)]2 in the LD-mode! is the critical value of the
local dispersion (formula 2) at which a target 1s judged as moving. The
parameter A(O) in the CD-model (formula 4) 1S the critical distance that has to
be traversed by a target to be judged as moving. in discussing detectability, the
argument (0) in C(0) and A(O) is redundant and can be dropped.

In order to compare the values of C and A directly, one can bring them to a
“common denominator” by expressing them in values of amplitude thresholds
for a fixed kinematic function. The simplest choice of the kinematic function
is the instantaneous shift of position. As it was stated in the introduction, If
the CD-mode! can be related to detectability at all, then the amplitude
threshold for instantaneous shift of position gives 'tne most precise estimate
of the critical displacement. In other words, the egquivalent threshold
amplituae or instantaneous shirt for A (If the CD-model holds) is A itself. It
can be shown that the eguivalent threshold amplitude of Instantaneous shirt
for C (if the LD-model holds) is equal to C(6T/v)!/2 = 3.464C (since T/1=2).

For their own data and from their reanalysts of others’ data, Dzhafarov and
Allik obtained values of C that fel) between 0.1 - 0.7 min of arc. This can be
considered a realistic confidence interval for E[C]. However in the analysis
underlying these estimates -- for kinematic thresholds, psychometric
functions, or reaction times -- C has been treated as a determintstic constant.
The proposition that the estimated deterministic C-values are close to E(C] is,
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strictly speaking, only a hypothesis. Therefore, in order to be absolutely sure,
we will set more conservative interval 0.07 - 1.0 min of arc. It is hardly
conceivable that E[C] for foveal absolute motion detection ought to fall outside
these very generous boundaries. Indeed, the threshold amplitudes of
instantaneous shift equivalent to these values are 0.25 - 3.5 min of arc, and
the reported values of absolute shift thresholds lie well within these
boundaries (Legge & Campbell, 1981). Obviously, these boundaries, 0.25 - 3.5
min of arc, should be considered also as a conservative interval for possible
values of A.

Now, if the estimates of A and C are obtained from the reaction time rather
than threshold experiments, then the Proposition of Identity can be judged to
hold only if a central tendency of C and A falls between the established
boundaries. This Is what we are going to check for the values of C(0) and A(O)
estimated from our present experiment.

The conservatism of our estimated boundaries for C and A makes the precise
choice of the measure of central tendency for them rather unimportant: shift
amplitudes of 0.24 min and 3.5 min certainly correspond to detection
probabtlities close to O and 1, respectively. However for direct comparison one
should use a same measure of central tendency for both C and A. The measures
estimated in our present analysis differ: it 1s E[A(0)] in the eCD-model, but it
is EIC(0)'/2]2 in both versions of gLD-model. Fortunately we can easily avoid
comparing moments of different types, since together with E[C(0)!/2)2 we get
an independent estimation of S[C(0)!/2]2, and the sum of the two values should
equal E[C(0)].

[Insert Figure 8 about here)
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In Figure 8 the value of E[a(0)} is plotted along with the estimations of
E[C(0)] derived from the elLD-mode! and gLD-model, multiplied by 3.464 to
represent the equivalent shift thresholds. The figure fllustrates the fact that
E(a(0)] estimated in the eCD-model grossly exceeds the very conservative upper
limit we have set: estimates are 6.62 min (RWS) and S.11 min (JF). In contrast,
derived from the eLD-mode], 1.92 min (RWS) and 1.13 (JF) not only fall between
the conservative margins, but are also well within the more “realistic” interval
0.35 - 2.4 min of arc. The obvious conclusion is that the considered variant of
the LD-mode! generalization s nicely consistent with the Proposition of
Identity, whereas the generalization of the CD-model is grossly inconsistent
with it. In other words, if one accepts the eCD-model one must also accept the
idea that the deciston to react to the onset of motion 1S always made
considerably after motion 1s actually detected.

The interpretation of the gLD-model is somewhat less certain. Although the
two estimates, 2.76 min (RWS) and 1.75 min (JF), are within our conservative
boundaries, the former value exceeds the “realistic™ (with most probability
also rather conservative) upper margin we have set. In combination with the
fact that the fit provided by the gLD-mode! is slightly worse than that of the
eLD-model, this makes the latter more preferable.

One may wonder why estimates of C(0) given by the gLD-mode! and eLD-
mode] differ when the two models are coincident at V,=0, where the models
converge onto the original form of LD-model. The reason is that the two
models, gLD and eLD, are fitted to the entire set of data, and that the common
parameter tg makes the fit for different V,-values interdependent.
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DISCUSSION

COMPARISON OF THE MODELS. It was disappointing not to be able to choose
among the three models on the basis of their fits to data However there are
other grounds for making a choice. For one thing, the CD-mode! is clearly not
consistent with the Proposition of Identity, the assumption that observers use
the same criterion in reaction time and detection experiments. Therefore
accepting the eCD-model for RTs to velocity change (including motion
anset/offset) would uncouple RT experiments from detection experiments. Such
an uncoupling would pose some difficult questions: (1) why shouid different
criteria control the observer's decision in the two types of experiments? (2)
why would an observer in a reaction time experiment not respond as soon as the
motion had been detected, particularly since the instructions clearly encourage
such behavior?

None of these difficulties attends the LD-model. It provides a unified
framework for both detectability and RT data, and justifies considering the
latter as a special case of the former. Although, there is no logical necessity
for the Proposition of Identity, in the absence of other factors Occam's razor
compels a preference for a model in which a single principle gives rise to
various forms of motion detection.

Comparison of the two versions of the LD-model favors the eLD-version over
the gLD-version. For one thing, the eLD-model fits data slightly better (see
Table 1). Second, it is in better agreement with the Proposition of Identity: the
estimation of E[C] for RWS s slightly over the “realistic™ upper boundary we
had set. In addition, the eLD-model can be computationally simplified with a
better precision. However, the superiority of the eLD-version should be taken
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with a reservation: the imprecision of the computational formuias for the ¢LD-
model could itself have been responsiblie for the latter's worse performance.

NETWORKS OF BILOCAL CORRELATORS. In the rest of the paper we will
consider the problem of realizability of the LD by a system of biologically
plausible mechanisms. First, we will discuss this probiem for the original
motion detectton model, then for the modifications of the eLD type The LD-
model for motion detection has been formulated as a highly specialized
algorithm: it is applicable only if the moving stimulus, a spatio-temporal
aistribution of luminance, is represented by a single kinematic function defined
at every moment. The problem of how the kinematic function is extracted from
the stimulus flow-field Is closely related to the general issue of the detection
of non-rigid motion. Both questions are beyond the scope of this paper. However
it 1s easy to see that a natural step toward solution of these probiems is to
realize the LD algorithm by the mass activation of more primitive and more
universal mechanisms. The response of such a system to a rigidly moving
pattern should be equal to the value of LD, but the system should perform
computations over any spatio-temporal Iluminance distribution, however
deviant from rigid motion.

One such system is suggested by the computationa! algorithm shown in
Figure 2, and by the form in which moving variance {s represented in equation
[2). variance of a set of numbers is the mean squared deviation of the numbers
from their mean, but it s also the mean squared pair-wise distance between
the numbers themselves. Thus, in Figure 2, the variance of spatial positions
within the travelling t-window is proportional to the sum of all squared pair-
wise distances between the spatial positions within the window. This suggests
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the idea that the variance could be provided by a pool of mechanisms each tuned
to a particular temporal and spatial distance. The output of such a mechanism
should be proportional to the squared spatial distance to which it is tuned.

It 1S not difficult to see in these mechanisms a variant of the widely
accepted idea that bi/ocal correiators are the elementary units of visual
motion encoding (Reichardt, 1961; Barlow and Levicy 1963; van Doorn and
Koenderink, 1982a,b; van de Grind, Koenderink, van Doorn, 1933). A btlocal
correlator (Figure 9) consists of two units that sense the luminance profiles
falling within two identical receptive regions separated by a distance As. The
responses to the two luminance profiles are transmitted with a relative delay
At into a comparator that performs a matching operation equivaient to a point-
to-point correlation. For stimplicity we will assume that a bilocal correlator is
completely specified by At and the locations, s; and s,, of its receiving
regions, as if all bilocal correlators had the same size and the same
sensitivity profile. This simplification will not affect the generality of our
analysts, since it will be confined to rigid motion only. Note that As s the
absolute value of the 2-D vector s,-s; (or, if we consider only one-dimensionat
motion, So-S, 1S a signed number).

At 2 moment t, the output of a bilocal correlator, <At, s, So>, Is maximal If
a same luminance profile occupied locations s; and s, at times t-At and t. With
a threshold device connected to the comparator (see Figure 9) the mechanism
becomes a detector with a Boolean output (O or 1): 1t “fires™ at time t If and
only If the patterns at (t-At, s;) and (t, sp) match. in order to make the bilocal
correlators compute 2 moving variance one has to make two additional
assumptions. First, the output of a mechanism <At, sy, S»> should be muitiplied
by As?s lsz-s|l2 (Figure 10, upper panel). Second, this output should last for 1-
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At (Figure 10, lower panel).

The first assumption, multiplication by As2, can be thought of in many
“techmical” variants. Thus, it could mean a straightforward amplification of the
Boolean output, or it could mean that the number of identical mechanisms <At,
Sy, 52> with Boolean outputs is an integer approximation of As2. It might even
have no structural meaning at all: since the output of any bilocal correlator is
on a “labeled line", it can be "taken with appropriate weight” on a subsequent
processing stage Whatever the technical aspect of the multiplication, its
functiona/ meaning is the following. In a network of bilocal mechanisms
dez:¢cned for detection of motion, the detection of larger displacements
conveys more evidence for motion than the detection of smaller ones. Therefore
responses of the bilocal correlators should be taken with weights
monotonically related to their spatial span, As. Squaring is a particular choice
of such a monotonic function.

The second assumption, above, means that the total duration of the
mechanism's cycle of activity, starting with activation of its first sensing
unit, is 1 : the cycle is comprised of the transmission time, At, and the output
time, 1-At. It follows that the maximum value of At a bilocal mechanism can
have is 1, with instantaneous output. Since a new cycie of activity of any
mechanism is initiated at every moment of time, the assumption should be
complemented by some rules of interaction of subsequent cycles. For simplicity
we assume no-interaction: the images of subsequent luminance profiles are
transmitted to the comparator independently, and the overlapping outputs
summed. )

The summary output of a pool of the described mechanisms at any moment t
will be proportional to moving variance of the kinematic function, provided all
triads <At, sy, s»>, At«, are represented in the pool. Of course, in a real
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network the representation can be only provided by a finite set of mechanisms
with overlapping spatial and temporal tuning. Therefore the proportionality of
the network’s output to the moving variance of the kinematic function can only
be approximate.

Moving variance 1s only first step in the computational algorithm shown in
Figure 2. To obtain LD one has to “smooth” the moving variance function by the
T-length moving average operator. The realization of this final stage in terms
of bilocal mechanisms is straightforward. Outputs of all the mechanisms
should be assumed to feed into a leaky integrator, or "stack” of temporal span T
(Figure 10, upper panel). Recall that the operation of averaging provides an
estimation of the magnitude of the moving variance function. Thus if T is zero
then the magnitude of the function will be the maximal single value of the
moving variance; iIf T is infinitely large then the magnitude is the grand mean
of all varfance values. The actual value of T lies between these two poles. The
output of the T-length "stack™ at every moment t is proportional to the LD-
value given by formula [2). Namely, 1t 1s equal to LD(t)Tt2, and in deciston rules
postulated for threshold setting and reaction initiation it should exceed the
critical level C2T12

In our description of bilocal correlators we have not specified whether the
receiving areas of a correlator are defined in retinal or _stlmulus-plane
coordinates. Either can be true. One could even assume that motion is processed
on two levels: a lower-level retina-bound network of bilocal correlators, and a
higher-level network with a bullt-in compensation for eye movements. The
question s which of these networks 1S assoctated with motion detection. In
most motion detection paradigms eye movements are negligible, so neither
possibility can be rejected. Therefore, in the context of this paper, we will
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consider implications for velocity change detection associated with each of
these possibilities: what additional assumptions should be made, or how the
network of bilocal mechanisms can be modified, to realize the eLD-model for
detection of velocity changes.

If motion detection is defined in retinal coordinates, then the simplest
hypothesis seems to be following*** Since no fixation point was provided in
our experiments, and the duration of the first phase of motion was relatively
long (between | and 2 s), the observers certainly reached the smooth-pursuit
stage of eye movement during this phase. Therefore, as velocity changes from
Vo to V,, the retinal velocity changes from O to |V{-Vgl, precisely the
equivalence postulated in the elLD-model. One has to make additional
assumptions to explain the increase of the critical ievel C as Vg increases from
4 to 16 deg/s. One could assume that tracking of faster motions is associated
with a higher level of “noise”, or “residual activity” in the network of bilocal
mechanisms, which (applying a standard signal-to-noise analysis) should be
compensated for by adoption of a higher criterion level. The higher level of
residual activity when tracking faster motions could be attributed to any or all
of the following factors: first, the initial activity in the network, before a
catching-up-with-V, saccade, is higher for faster motions, second, tracking
could be less smooth for faster motions; finally, the average time of
uninterrupted tracking decreases as motion velocity increases. Indeed, if
tracking starts in the center of our 16 deg aperture, then for 8 and 16 deg/s
velocities the eye would have to return to the center and start over again 1-2
times and 2-4 times, respectively. No returns would be necessary for
velocities of 0-4 deg/s, so any residual activity following the initial catching-
up-with-V, saccade would have more time to diminish.

== The authors are indebted to Joseph Malpelt for substantial contribution into this hypothesis.
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If- motion detection is defined In stimulus-plane rather than retinal
coordinates, then some form of the "adaptation” process should replace the
physical zeroing of forespeed in the previous hypothesis. The required process
Can be provided by a re-calibration of the weights, or amplification
coefficients, attached to the Boolean outputs of the bilocal correlators.
Namely, at the second phase of motion, V,, the output of any biloca!
mechanism <At, sy, s>, Instead of being multiplied by As2= Is,-5,12 , should be
multiplied by (s5-S1) - VoAtl2. Let us consider in more detail the process by
which adjustment of weights might be achieved. During the first phase of the
two-phase motion <Vg, V> in every subset of the bilocal mechanisms
corresponding to a given At the activated mechanisms in the network will
group around the elements <At, s, s+VpAt> (provided that the subset fs
activated at all, /e If the motion has lasted for more than At). This excitation
pattern becomes stabilized after a time close to 1, and the task is to detect
the change in this pattern. This goal is achieved by the re-calibration of the
system of weights attached to the mechanisms, so that after the perfod t the
network would not respond until the excitation pattern changes. The re-
calibratton 1s mathematically equivalent to subtracting the spatial span VoAt
of the excited mechanisms from spatial spans of all mechanisms with a given
temporal span At. After that, as long as the first phase of motion lasts, the
reorganized system will be silent: the responses of the excited mechanisms
will be muitiplied by I(s+VgAt) - s - VoAtlZ = 0. As s00n as the velocity changes
to V,, the now-reorganized system will respond like the original system would
have responded to V-V, : the outputs of the excited mechanisms <At, s,
S+VjAt> will be multiplied by I(s+V|At) - s - VoAtl2 = [(V,-VgIati2 The
hypothetical process of re-calibration, providing a transient character of
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motton detection network activity, could be referred to as “self-inhibition”.

To understand why the reorganization of weights also affects the critical
level C, one could again assume that silencing of the network is only relative,
and that a “residual activity” is higher for faster motions. One could even
repeat one of the arguments suggested in the retina-bound-network hypothests:
that higher residual activity is due to the higher initial activity realizing
detection of the first phase of motion. Also, the necessity to restart tracking
after encountering aperture border could be associated with a re-activation of
the network even if defined in stimulus coordinates. Alternatively, or in
addition, one could assume that spatial tuning characteristics of bilocal
mechanisms overlap, and that the degree of overlap increases with As.
Consider the set of bilocal correlators with a given span At. Suppose that
during the Vg-phase three groups of mechanisms were activated, with peak
spatifal tuning to VgAt, VpAt+e, and VoAt-e The assumption we have made above
means that € is greater for greater VoAt, and thereby for greater V,. One of the
values, VgAt, VpAt+e, or VpAt-€ should be chosen to serve as an effective zero
in the modified system of weights attached to the mechanisms with the
temporal span At. At the present level of analysis it is immaterfal whether the
effective zero is chosen at random amidst the activated units, or whether there
is a mechanism determining the “central” value VoAt more precisely. Whatever
the rule, 1t 1s clear that the "silencing™ of the network at the end of the V-
phase, after the weights have been re-calibrated, 1s only relative. For example,
If VoAt operated as an effective zero point, then the responses of the
mechanisms tuned to spatial shifts VpAt+e and Voat-¢ will each be taken with
the weight [(VAt+g) -VAtl2 = €2. Applying a standard signal-to-noise analysts,
greater values of ¢ will require the adoption of higher critical levels.
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CONCLUSION. We conclude this paper with a brief recapitulation of the main
results. First, a modified variant of the LD-model accounts for the RTs to
velocity changes <V, Vy>. The essence of this modified variant is the
application of the original LD-model to the detection of motion onset in <O,V,-
V>, with the critical level C being a (non-strictly) increasing function of V.
Second, at V=0, where the modified and the original versions of the mode!
logically coincide, the estimated value of C was found to be in a good
agreement with the estimates obtained from other motion detectability
experiments. Third, the changes in speed and directfon are treated in the same
way. In both cases, the perceptual response seems to depend upon the algebraic
difference between V-Vq. Finally, both the original and the modified verstons
of the LD-model can be realized by mass activation of a network of bilocal
mechanisms.

Some of the characteristics we have attributed to these bilocal mechanisms
do not seem 'to have obvious analogues in known physiological structures. The
long duration of the mechanisms’ activity, about 0.5 s, suggests that the
analogues should be sought In the neuronal c/rcu/try rather than in single
neurons. However physiological considerations do not seem to be most
imminent problem at present. Many questions remain to be answered in a purely
psychophysical plane. Thus, it is not clear how the described network can
provide the concordant shift of 1 and C as the detection changes from absolute
to relative motion (Dzhafarov and Alltk, 1984). Also, 1t remains to be found
out, whether the network can account for the detection of non-rigid planar
motion. This seems to be a very important line for future analysis, which
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should show whether the model can indeed be considered as a good
generalization of the original algorithm for local dispersion.

Speaking specifically about the problem of RTs to velocity changes, an
“important remaining problem is to experimentally test the hypothesis of eye
movements against the hypothesis of re-calibration of weights. Another
obvious continuation of the present work would be to use two dimensional
velocity pairs, i.e. pair of Vy and V, that differ only in the orientation of their
motions. The eLD-model, described in this paper, can be applied without
modification to this situation if [V,-Vgl is understood to be the length of a
vectorial difference, rather than as the absolute value of a scalar.
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APPENDIX

COMPUTATIONAL FORMULAS FOR eCD-MODEL, eL D-MODEL, AND gLD-
model

Formulas for E[tp) and S[tp) for the eCD-model can be derived from
formula [S):

tp(Vo, Vil = L [aVlIV,-Vyl (A1)

where the period denotes either of two moments, E and S. This formula together
with the general equations [9] form the computational basis for the eCD-
modei-predictions.

The situation is more complicated with the two models that are based on
LD-model. In formulas [6] and (8] there is no function of C(Vqy) on which tp
depends linearly. Strictly speaking, to deal with the problem we have to specify
the exact form of the 8 distributions of C(Vg)s, Vg =0, 1,2, 4, 8, and 16 deg/s.
However such an analysis would add more free parameters and make the LD-
model-based versions incomparable with the simple application of the eCD-
model.

Fortunately there is a way to avoid such an awkward analysis. wWe can
assume that the decision time, tp, is considerably smaller than t (0.5s). Then in
formulas {6] and [8] al) the summands except those containing the lowest power
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of the fraction tp/t can be omitted. This assumption gives us approximate
formulas in which tp depends linearly on some (nonlinear) function of C(Vq).
Now the formulas for the moments can be easily derived. For the eLD-model we

have:

QtpVo, VI = L [CV T/2J(12T0 /4/(Iv -V /2 (A2)

For the gLD-model we have:

DV, V) = [CO)/2)(12T0) 1 / 4/ 1V 111 /2 if Vg =0
(A3)

DV, V] = L [CVOIZ/3KETHI/3/(Iv -V /3 if otherwise

Here again the period stands either for E or S, and the predictions for E[RT] and
S[RT] are derived by combining the formulas with the general equations [9). The
values of T and t in application of the formulas were put equal to 1s and 0.5s,
respectively. The value of T/t has been shown to equal 2 for all detection
experiments, whereas the value of t varied in the region 0.4 - 0.7s. The value
0.5s for present analysis was chosen simply as a "round” number. We have
checked that change of t value in the region 0.4 - 0.7s leads to only minor
changes in predicted values. All three models have the same two time-
dimensioned parameters, E[tg) and S[tg). The following table summarizes the
sets of the models’ distance-dimensioned parameters.

{Insert Table A1 about here]
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TABLE 1. MINIMUM MSRD VALUES

mean RT st. dev. of RT
SUBJECT eCD elD gLD eCD elD gD
RWS 357% 369% 480% 13.66% 13.67% 1466%
JF 2528 267% 3.12%  1892% 20.17% 20.88%
JLM™ 263% 191% 266%
JM 254% 2.12% 2.49%

- = ., Y D S e e P e S S G e ek - -

* auxiliary experiment, averaged over 3 dot densities
**auxiliary experiment, 3 dot densities fitted separately
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TABLE A1. DISTANCE-DIMENSIONED PARAMETERS

MODEL PARAMETER CENTRAL TENDENCY VARIABILITY

eCD-mode! a(Vg) Ela(Vg)] Slatvy)]
t 4
eLD-model C(Vg) E[C(Vg) 17212 SlC(v)1/2)2
ifvg=0 E[C(0)172)2 s(C(0)1/2)2
gLD-model C(Vp)

ifvge0 EIC(VQ)2/313/2  s[c(v0)2/313/2

ot SR GEN e
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FIGURE CAPTIONS

FIGURE 1. Display and types of kinematic functions used. Multiple-dot patterns
like that shown in the upper left panel moved horizontally inside a 16 deg
diameter circular aperture. The motion consisted of two phases, with
constant velocities represented by the slopes of the straight lines in the
panels a, al, b, b1, and ¢. The two motions were either in the same
direction (panels a, b), or in opposite directions (pane! ¢). In the latter case
the two phases had equal speeds. For unidirectional phases, the change in
speed could be incremental (panel a) or decremental (panel b), Including the
cases of motion onset (panel al) and offset (panel bl1). See Procedure for
details.

FIGURE 2. Schematic presentation of an algorithm equtvalent to formula [2] of
the LD-model. Right panel shows a complex kinematic function with
temporal window of length t travelling in time and computing the variance
of spattal positions within it. Two positions of the t-window are shown in
the figure: (t'-t,t’] and {t"-1,t"). The results of the computations form the
moving variance function shown in the middle panel. Thus, the value of this
function at moment t' s equal to the variance of spatial positions passed
between the moments t'-t and t'. The moving variance function I1s smoothed
by travelling window of length T. This smoothing produces the LD-function
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shown tn the left panel. Two positions of the T-windows are shown in the
figure: [t*-T,t*] and [t**-T,t**] Thus the LD-value at the moment t* is

equal to the mean value of the moving variance between t*-T and t*.

FIGURE 3. Mean RT versus "square-root-closeness” of V; to Vg, V4 - VgI™1/2
Subject JF. Every panel contains the mean RTs for all pairs <Vg, V>, but the
means corresponding to one value of Vg (given in insets) are “highlighted”
(represented by squares), whereas the remaining values serve as a
background (dots). Filled squares correspond to velocity increase (Vy> Vg),
empty squares with central dots correspond to velocity decrease (V< Vg),
crossed squares represent the direction reversal condition (V= -Vq).

Solid lines are theoretical predictions of the eLD-model: Eltg] is equal to
180.5 ms (intercept with the vertical axis), central tendency of C (from
panel O through 16) is equal t0 0.28 - 0.31 - 0.37 -0.39 - 0.65 - 1.37 (min
arc). These values correspond to the slopes of the solid lines.

Optimal parameters for the eCD-model: E[RT] = 209.0 ms; central tendency
of A (from panel O through 16) 1s S.11 - 513 - 6.30 - 7.99 - 13.66 - 28.21
(mtn arc).

Optimal parameters for the gLD-model: E[RT] = 163.0 ms; central tendency
of C (from pane! O through 16) 150.45 - 1.08 -1.63 - 2.26 - 407 - 8.43 (min
arc).

See Table A1 for the exact meaning of “central tendency".

FIGURE 4. Standard deviation of RT versus "square-root-closeness” of V; to
Vo, IVy - Vol~172. Subject JF. Every panel contains the st. dev.s for all
pairs <Vg, V>, but the st. dev.s corresponding to one value of Vg (given in
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insets) are "highlighted” (represented by sgquares), whereas the remaining

“values serve as a background (dots). Filled squares correspond to velocity

increase (V> Vg), empty squares with central dots correspond to velocity
decrease (V< Vg), crossed squares represent the direction reversal
condition (V= -Vy).

Solid lines are theoretical predictions of the eLD-mode!: S[tg] is equal to
22.0 ms (intercept with the vertical axfs); varfability of C (from panel O
through 16) 1s equal to 0.046 - 0.067 - 0.084 - 0.058 - 0.118 - 0.237 (min
arc). These values roughly correspond to the slopes of solid lines.

Optimal parameters for the eCD-model: S[RT] = 26.5 ms; variability of A
(from panel O through 16) is 2901 - 2928 - 4697 - 4383 - 9.530 - 17731
(min arc).

Optimal parameters for the gLD-model: S[RT] = 18.0 ms; varfabflity of C
(from panel O through 16) 15 0.058 - 0.281 - 0.411 - 0.449 - 0.895 - 1.833
(min arc).

See Table Al for the exact meaning of “variability”.

FIGURE 5. Same as Figure 3, but for subject RWS.

Solid 1ines are theoretical predictions of the eLD-model: Eltg] s equal to
180.5 ms; central tendency of C (from panel O through 16) is equal to 0.49
-0.49-0.39-050-0.88 - 1.64(min arc).

Optimal parameters for the eCD-model: E[RT] = 2145 ms; central tendency
of A (from panel 0 through 16) i1s 6.62 - 7.12 - 6.19 - 8.24 - 1543 - 28.13
(min arc).

Optimal parameters for the gLD-model: E[RT] = 162.0 ms; central tendency
of C (from pane! O through 16) 15 0.72 - 1.4 - 1.7 - 266 ~496 - 9.62 (mIn
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arc).

FIGURE 6. Same as Figure 4, but for subject RWS.

Solid lines are theoretical predictions of the eLD-model: S[tg) is equal to
19.5 ms, variability of C (from pane) O through 16) is equal to 0.065 - 0.058
- 0.053 - 0.096 - 0.169 - 0.189 (min arc).

Optimal parameters for the eCD-model: S[RT] = 26.5 ms; variability of A
(from panel O through 16) is 3.024 - 2930 - 3.278 - 5378 - 11.219 -
14.660 (min arc).

Optimal parameters for the gLD-model: S[RT] = 18.0 ms; variability of C

(from panel O through 16) is 0.077 - 0.245 - 0.309 - 0.616 - 1.106 - 1.542
(min arc).

FIGURE 7. Results of the auxiliary experiment. Mean RTs for patterns with 50
and 100 dots at each value of <Vp Vy> are plotted against mean RTs with
patterns of 200 dots for the same <Vq V>,

FIGURE 8. Equivalent amplitude of instantaneous displacement corresponding
to theoretical estimations of distance-dimensioned parameters, C and A, at
Vo= 0. If the Proposition of Identity holds, the equivalent amplitude should
be equal to the minimal detectable amplitude for instantaneous
displacement. Clear area in the figure corresponds to the range of realistic
values for the amplitude threshold. Sparsely stippled area corresponds to
the values that are beyond the realistic 1imits but still within the

_conservative boundaries set in this paper.  Densely stippled area
corresponds to the range that certainly cannot include possible values of the
threshold amplitude. See Analysis for details.
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FIGURE 9. Basic structure of a bilocal correlator. Two identical receptor areas

centered at s, and s, feed into a matching device, or comparator.
Information transmission from the sy-area to the comparator takes by At
longer than transmission from the Sp-area. Therefore the images of
luminance profiles falling on the two areas at two moments separated by
At reach the comparator simultaneously. The images are supposed to be
analogues of spatial maps of excitation, and the comparator performs an
operation analogous to a point-to-point correlation. If the value of this
correlation exceeds a critical level set by the subsequent threshold device,
the mechanism generates a signal. See Discussion for details.

FIGURE 10. Basic structure of a bilocal correlator that impiements the LD-

algorithm of Figure 2. Upper panel: the output of correlators is amplified
proportionally to the squared value of their spatial spans, and is fed into a
leaky integrator. The integrator acts as a stack whose memory span is T: at
every moment t it adds the summary input to its content and “forgets” the
input received at the moment t-T. Lower panel: the bilocal correlator's
signal that is initiated by a given pair of luminance profiles, separated in
time by At, lasts for 1-At. So the total cycle of activity of any correlator
takes a constant time, 1. See Discussion for details.
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L. Introduction

Of the many important contributions to the study of motion perception, three stand out as
towering landmarks in a long and provocative scientific literature. Like their physical
counterparts, these intellectual landmarks can serve to orient travelers who are unfamiliar with
the surrounding territory. Also, these landmark contributions have influenced much of the
current work on motion perception. As a result, they provide a convenient and natural entree
to our discussion.

The first modern study of motion perception was done by Sigmund Exner a century ago.
Although other scientists before him also made significant contributions, Exner (1888) was the
first to appreciate that, as a perceptual quality, motion was special. Physically, motion can be
described as a spatial change over time. But Exner demonstrated that perceptually, motion was
not merely the stepchild of the perception of space and and the perception of time. In one study
(1888), Exner placed two sources of electrical sparks so close to one another that an observer
could not distinguish the two. Despite the impossibility of resolving the sources spatially, when
the sparks were presented with the appropriate time interval, observers experienced compelling
motion —the spark scemed to move from one location to another. In other words, observers
expericnced motion even though they could not gpatially resolve the two endpoints of the
motion. Exner also succeeded in demonstrating that observers could experience motion even
though they could not mnmﬂx resolve its sources.

The second landmark in our brief history of motion perception is the studics Max
Wertheimer reported in his 1912 monograph. Unfortunately, this monograph is more often
quoted than read. But for anyone who dclves into it, Wertheimer’s monograph is a remarkable
source of stimulation. Many rcaders will be familiar with the monograph’s main experiment: a

compelling sensation of motion can be produced by a brief, sequential prescntation of first one

S04

-




then the other of two, spatially adjacent lines. But the monograph also anticipates issues that
many vision researchers are working on today. For example, Wertheimer provided a good
demonstration of motion incrtia, a phenomenon that is central to perceptual theory which will
be described below. He also provided a good demonstration of hysteresis, a form of "memory”
that has proven to be of much theoretical importance (Williams, Phillips & Sckuler, 1986). But
that is just a small, highly selective sample; Wertheimer’s entire monograph is worth reading for
enlightenment as well as for stimulating research ideas. |

And finally, the third landmark exploration of motion perception is Werner Reichardt’s
studics in the late 1950’s and carly 1960’s. These studies constitute a genuine paradigm shift, in
Thomas Kuhn's sense (Kuhn, 1970). Reichardt’s clegant mathematical model (1961) shifted the
field from its prior status — an cnterprisc geared to the uncoordinated collection of interesting
facts —~ to a field with a conscnsus about research methods and priorities. Reichardt’s model, for
the first time, stimulated people to think about how the visual system might extract motion
information from the stimulus on the retina. His work, though now a quarter-century old,
remains very much alive today. Most current models of motion extraction are claborations on
Reichardt’s original modcl. Basically, the scheme assumncs that the visual system compares the
signals that arise, over time, from different photorcceptors. If some pattern travels across the
retina, its cffect on receptor . at time t will be strongly correlated with its effect on another
receptor, Ry, at some slightly later time, t+D. There will be a strong cross-correlation, with lag
D, between the signals from the two receptors. Note that the spatial separation between the two
receptors acts to delay one signal relative to the other. Figure 1 illustrates the kernel of
Reichardt’s model. Note that this simple scheme makes use of only two receptors (shaded
rectangles in each pancl). Poggio and Reichardt (1973), extending the basic scheme, have shown
that a motion detection model with n inputs and a single output can be reduced to the sum of

2-input pairs, the case illustrated in Figure 1. (Sce Sckuler, Pantle and Levinson (1978) for more
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details.) Reichardt's work opened the way for the development of detailed, quantitative
accounts of motion perception (Reichardt, 1987).
Figure 1 about here
Although the mathematical precision, clarity, and force of Reichardt’s contribution makes
today’s work on motion more coherent, there is still an enormous variety of approaches to
motion. There’s a good reason for this variety, despite what seems to be quite a broad

consensus.

The Many Functions of Motion

Since motion plays so many different perceptual roles, researchers can emphasize or
concentrate on certain aspects only. Such choices necessarily lead rescarchers along different
paths. Let us bricfly review some of motion’s many roles (sce Nakayama, 1985, for a more
thorough treatment).

Motion is particularly important for segregation of figure and ground. If an object moves
relative to a background, producing differential speeds or diffcrent directions in the retinal
image, the visual system converts those diffcrences into perceptual scparation of figure and
ground (shape from motion; scc Chapter 10 in this volume). Motion also scgregates, or sorts,
objects into differcnt depth plancs (depth from motion; again, sce Chapter 10 in this volume).
When any single region of the retina is stimulated by different velocities, the visual system is
challenged (shearing; see Koenderink & van Doom, 1978). Different velocitics usually mean
different objects ~or parts of objects. But in the natural world, two (or more) objects cannot
occupy the same place at the same time. The visual systern seems to resolve the apparent
contradiction of different velocitics within a single region by assigning those diffcrent velocities

to different depth planes. The processes responsible for such depth assignments, structure from
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motion, are currently being actively investigated by vision scientists, physiologists, and people
interested in computer vision.

Finally, one of the main motives for studying motion perception is a desire to understand
how motion helps us avoid colliding with objects, keeps us moving along the straight and
narrow, and helps to maintain our posture. As will be shown later, motion’s different functions
probably require that a variety of different ncural computations be carricd out, most likely by

different neural circuits.

A. Stimuli,

Sdientific research is limited —or empowered— by the tools that are available. By probing it
with a sufficiently complex and rich stimulus, the motion system can be forced to reveal its own
richness. For this purpose, stimuli belonging to the family of random dot cincmatograms are
especially good. All members of this family have two fcatures in common: first, a random
spatial arrangement of their clements, which is designed to minimize visible contours; second,
some rule or rules that govern the way in which those ciements are displaced from one frame of
the disélay to the next. [Sce Chang (1986) for a discussion of these stimuli.]

A pair of problems. Random dot cincmatograms present a special challen‘ge to the visual
system in the form of the correspondence problem. The term "correspondence problem™
denotes the challenge of matching elements in one frame with elements in a succeeding frame.
From top to bottom, Figure 2a illustrates three successive frames of a random dot
cinematogram. Some subsct of dots from the first frame (top) has been shifted in the sccond
frame (middle) and shifted again in the third frame (bottom). In Figure 2b the shifted dots are
highlighted for ease of identification.

Figure 2 about here

Though effort is needed to find the subsct of dots in Figure 2a, when the same frames are
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shown as a cinematogram the visual system extracts the subset with no effort at all. More
specifically, if the three frames illustrated in Figure 2 were spatially superimposed and shown
in rapid succession, the displaced set of dots would appcar to move upwards and to the left.
The visual system has little trouble extracting coherent motion of the shifted dots. Even with
enormously dense and complex displays, perceived motion can still be easily extracted.

"Matching™ may not be the proper term for what the visual system is actually doing, but it is
a term in common use. There are various possible strategies for solving the correspondence
problem. One strategy might be a point-by-point match. This approach may actually be
employed when the cinematogram contains just a few elements. But when the cinematogram
contains several thousand ciements and only relatively few are being shifted in a coherent
fashion, a point-by-point match becomes unfeasible. An alternative employs a more global
strategy, one heuristic or another from the "bag of tricks” to which Ramachandran and Anstis
(1986a) have called attention.

The correspondence probiem is not the only challenge that the visual system must overcome
in its quest to extract useful information about object motion. Another significant obstacle, the
aperture problem (pp. xx), arises from the limited ficld of view, or receptive ficld, assigned to
any visual ncuron. Imagine that you sce the world through the narrow local window of a single
receptive ficld. This restricted ficld of view necessarily creates ambiguities. Suppose an
infinitely long edge is moving through the receptive field. Any one of a large number of
combinations of directions and speeds could mimic perfectly the velocity of that edge. So, to
that neuron, many combinations of directions and speeds ought to be indistinguishable. Yet,
except in some very special circumstances, perceivers do not make the sort of confusions that
one ncuron would. As will be secn later in this chapter, Movshon and his colleagues (1586)

have developed an ingenious schemne to circumvent this apparent neuronal limitation.
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The ease or difficulty with which one experiences motion in displays depends upon a
number of spatial and temporal variables. For example, if the elements from one frame to
another are shifted by very large steps, the sensation of motion breaks down —instead of
motion, one set of dots seems to disappear and then reappear at a different location. This upper
limit is now called dmay, the largest displacement between successive presentations for which
observers still obtain a coherent sense of motion. The existence of such a limit has been known
for some time; Wertheimer (1912) noted and Korte (1915) formalized it in one of his laws of
apparent motion. More recently, this spatial limit, dm,,, has has become an indispensible tool
for understanding motion perception. Among other virtues, dmay can be quite useful for
bridging the gap between psychophysics and physiology. As this chapter shows, measurements
such as dyay can be made in several different domains: on single neurons, in human and
animai observers. Such comparisons, allow connections to be made across the domains. At
various points in the chapter, we will note particular linking propositions, statements that assert
some link between physiological (¢) and psychophysical (¥) domains. (Sce Chapter 2, this
volume.)

Returning to the nature of test stimuli, it is worth pointing out that random dot
cinematograms can vary in a great many different ways. Consider first, the life time (exposure
duration) of each individual element. In some random dot cinematograms, individual clements
have a short life expectancy; they exist for a short time and then disappear to be replaced by
other random clements (Mather & Moulden, 1980; Andersen & Sicgel, 1988; see Chapter 3, this
volume). This renewal scheme minimizes the probability that individual dot paths are being
tracked. For example, one could not compute a dot’s direction by comparing the points at which
it entered and exited the display area.

The successive displacements of the elements in a cinematogram can be govémcd by various

sorts of rules. For example, a simple rule can be used, causing all the moving elements to be
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displaced in unison all in the same direction and at the same pace. This represents the extreme
of narrow-band directional content: only one direction is present. However, there are other
possibilities. Random dot cinecmatograms can contain many different, spatially intermingled,
directions of motion, all present simultancously. For example, the elements in a given local area
may be displaced over a series of frames, not by some constant step and direction, but by
directional values drawn from a distribution with some given mean direction and covering a
range of directions (Watamaniuk, Sekuler & Williams, 1988).

With this latter scheme, a perceiver may experience two contradictory percepts: a)different
directions of local motions, and b)a coherent flow in the direction of the mean of the directional
distribution (Williams & Sckulcr, 1984). One sces individual dots moving randomly, but at the
same time one also perceives the overall flow of the dots in some dominant direction. This
global percept enables one to use the concept of metamerism to study the mechanisms of
motion perception (Richards, 1979). Two stimuli are said to be metameric if, despite physical
differences, they are perceptually indistinguishable. Under appropriate circumstances,
metamers reveal what information the visual system retains and what information it discards.
Although best known and exploited in color vision, metamers also exist in the domain of
motion: radically different distributions of directions are able to produce perceptually indistin-
guishable motions.

To use psychophysical "confusions” to study the number or type of underlying mechanisms,
one postulates a particular type of linking proposition, the Converse Identity proposition
(Teller, Chapter 2, this volume). One formulation of the proposition states that "statistically
indiscriminable sensations imply statistically identical states of the nervous system.”
Symbolically, this proposition can be stated as

Identical ¢ -> Identical V.
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An Important Spatial Limit to Motion

In analyzing human motion perception and its possible neurophysiological basis, we have
learned a lot from experiments on apparent motion using random dot cinematograms such as
the one illustrated in Figure 3. As indicated earlier, a key parameter from these experiments is
dmax- & spatial limit on apparent motion. This parameter has particular significance when one
tries to relate the psychophysics of motion to the physiology of direction-selective neurons; it
presumably represents the spatial range of the interactions that underlie directional selectivity
within the receptive fields.

Figure 3 about here

Earlier studies (Braddick, 1974) suggested that dpayx was a quite closely defined parameter.
It seerned to fall between 15 and 20 minutes of arc, regardless of variations in the size and
spacing of the elements of the random dot patterns. This measure is striking because it
represents a distance much smailer than the range for apparent motion in the classic work of
Wertheimer (1912). Recall that in those studics, Werthcimer, and others after him (e.g.,
Neuhaus, 1930), quantified the range for which one could see motion when spatiaily-offsct
lines or spots were alternated, and typically found this range to be at lcast several degrees of arc
(sce also Jung & Spillmann, 1970). The term "short range process” was coined by Braddick
(1974) to indicate a motion process that would be particularly responsive to cinematogram
dsplays. It was meant to contrast with the longer range process that yields perceived motion in
patterns which contain a small number of clearly defined elernents. Although recent work (sece
below) shows that the spatial limit cannot be thought of as an invariant 15-20 min arc, the ideca
of a distinct short-range process seems still to be valid.

In fact, two demonstrations show that, under the right conditions, dp,, can be extended a

good deal beyond 15-20 min arc. In one study, Baker and Braddick (1985) constructed random
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dot cinematograms in which dot displacements occurred within a pair of strips on either side of
the fixation point. By varying the separation of the strips, dya could be measured at several
different eccentricities of viewing. The results in Figure 4 show that dy,x increases with retinal
eccentricity in an orderly fashion, and at 10 degrees from the fixation point, displacements as
large as 90 minutes can be perceived as coherent motion. This increase is not entirely
unexpected, since most spatial parameters of vision increase with eccentricity (see Chapter 9,
this volume). Therefore the maximum range of motion detection is no exception to the rule.
However, two features of this result are worth noting. First, the increase in dyyy with
eccentricity implies that direction of large displacements (or high velocities) can be perceived
more accurately in peripheral than in foveal vision. This is one of the few ways in which the
performance of peripheral vision is actually superior to that of the fovea. Second, the function
relating dpy,ax to eccentricity does not have the samce form as that found for parameters such as
minimum angle resolvable (acuity) [see Chapter 9, this volumel. Most likely, task-dependent
variations in scaling with eccentricity suggest that different visual functions depend upon
different subpopulations of visual neurons.
Figure 4 about here

In concluson, dm,y should not be thought of as a constant; its value depends on the
location tested in the visual ficld. Eccentricity is not the only variable that alters d ., ; an
equally potent variable is the pattern’s spatial frequency content. The elements in the random
dot cinematogram illustrated in Figure 3 had quite sharp edges, and this is important in
determining the measured dyy,,x. For example, if one takes such a cinematogram and adjusts
the displacement so that it just exceeds dyp,,, the scnsation of motion will cease, as one wouid
expect. However, with the displacement still set at the same value, one can immediately restore
the sensation of motion by simply squinting and thercby blurring the image. Thus, blurring,

which removces the high spatial frequencies in the pattern, has effectively increased dmax- This
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may also explain why dpy,, is larger in the periphery of the visual field.

Cleary and Braddick (1985) tested the effects of spatial frequency on dmax in a more
systematic way. They filtered random dot patterns so that they contained only certain narrow
bands of spatial frequencies. In three different cinematograms, the center frequencies of these
narrow bands were 1.3, 2.7 and 5.3 cycles per degree. Resuits with these three filtered
cinzmatograms are shown in Figure 5. The y-axis shows the percentage of errors in observers’
directional reports. The values on the x-axis are not expressed in terms of minutes of arc, as the
values in somne preceding figures had been. Instead, x- axis units are the number of cycles of the
center frequency of the band, for cach cinematogram. Plotted in this way, the three functions
are virtually identical, and in particular dp,x (taken as the lowest displacement for which error
rate riscs to 20%) falls at about the same valuc for all three cinematograms. However, this
constant number of cycles will occupy very different spatial extents (g.g., ane cycle 0f 5.3
cycle/deg cinematogram covers only about onc-fourth the distance covered by one cycle of the
1.3 cycle/deg cincmatogram). That is, the similar dp,,x values in Figure 5 imply a factor of four
variation in dpax expressed in the usual, angular distance units. Chang and Julesz (1983) have
reported rather similar resuits. Thus, within a given region of the visual ficld dp i is a
function of the spatial frequencies present in the image. Roughly speaking, if a random dot
cinematogram consists of big blurry patches, one can sece them move over large displacements.
There is a great deal of evidence that the visual system contains receptive ficlds, or channels,
with different spatial frequency properties. These results suggest that at any particular location
in the visual field, the overall scale of those receptive fields differ, not only in the scale of
patterns to which they are sensitive, but also proportionally, in the scale of displacements that

_ they can detect (compare the Chapter 9, this volume).

Figure 5 about here
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There are some other significant fcatures in these data. Figure S shows that in terms of the
characteristic spatial frequency of a narrow-band cinematogram, dpp,, turns out to be just
about one cycle of that frequency. (There are also some interesting oscillations in performance
for displacements above one cycle, but we are not concerned with those here.) Several current
theoretical models of motion processing imply that the limiting displacement ought to be
somewhere between a quarter and half a cycle (¢.g,, Adelson & Bergen, 1985; van Santen &
Sperling, 1985). The form of the data casts some doubt on such "quadrature phase’ models. It
implies that correlation mechanisms that underlie motion perception are not necessarily
confused by the similarity between one cycle and the next. Therefore, they mus't be using
additional informz.tion than simply matching the locations of individual zero-crossings or peaks
in the one-dimensional signal. This additional information might be contained in the detailed
shape of the waveform, combined information from a range of oricntations, or an cxtended arca
of the pattern.

A second important implication comes from considering the original, unfiltered,
cinematogram. This contains a broad band of spatial frequencies, including the low frequencics
which are known to yicld a large dmy- However, dp, 4 for this broad-band pattern can still
be increased by blurring, which does not add to these low frequencies but simply attenuates
the high spatial frequencies. Thus, we conclude that the presence of high frequencies (fine
detail) can interfere with the use of motion information potentially available in the low
frequencies. That is, although each spatial frequency channel has its own dpyay, in this situation
they do not act independently. This inaccessibility of information carried in the low spatial
frequencies when high frequencics are present is reminiscent of the way a static picture can be
made unrecognizable by segmenting it into sharp-edged blocks (with high spatial frequencies),
as in the well-known ‘Abraham Lincoln’ demonstralion (Harmon, 1971). When optically

blurred, Lincoln’s photo becomes immediately visible. Clearly, independent frequency
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channels are by no means the whole story, neither with respect to suprathreshold pattern
recognition nor to motion perception.

What do these results imply for defining a distinctive short range process in motion
perception? As we have seen, dmax varies as a function of the spatial frequencies in the retinal
image, and as a function of retinal eccentricity. If this limit is so variable, does the division
between ‘short-range’ and ‘long- range’ have any meaning at all? Perhaps the perceived motion
ascribed to a distinct long-range process occurred in conditions when low spatial frequency
information could be used, and consequently dp,x was large. However, the short range process
was not defined solely in terms of its spatial limit. Even though various manipulations can
affect the value of dmyy, certain temporal propertics scem to be characteristic of the short range
process.

Take for instance the eccentricity variation mentioned before. Figure 6 shows the results of
measuring dm, at different cccentricities while also varying the interval between the first and
second exposure. As the interval approaches 100 msec all the curves fall off in a similar
manner. This temporal variation docs not scem to change with eccentricity. And indeed, there
is a similar effect with variation in spatial frequency: similar limiting intervals seem to hold
regardless of the cinematogram’s spatial frequency content. Again, with respect to the more
classical kind of apparent motion displays (¢.g., Wertheimer, 1912) these are relatively short
intervals. Therefore the distinctive temporal aspect of the short-range process holds up across
spatial variations, and a different, ‘long-range’ process must be invoked to account for the
apparent motion with single elements that can be scen with considerably longer delays.

Figure 6 about here
At the beginning of this soction, it was suggested that d ., a psychophysical variable,

should be related to physiological measuras of the range of direction-specific intcractions within
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receptive fields. Figure 7 illustrates some data which may allow us to make this connection,
The basic strategs’ is to measure a ncuron’s response 10 a stimulus that is displaced laterally
from one brief presentation to the next. As the displacement gradually increases, one notes the
displacement at which the responses cease to be dircctionally selective (g.g. the response to a
displacement to the left becomes as strong —~or as weak— as that to a displacement to the right).
This procedure is analogous to the psychophysical assessment dyy, 5. The data shown in Figure
7 were gathered by Mikami, Newsome and Wurtz (1986) from single neurons in macaque
monkeys. The stimuli were not random dot patterns as used in the psychophysical d ‘
experiments, but thin bars that appeared to stcp across the visual field in a scries of flash
exposurcs. Triangles represent measurements on directional cells in Area V1, known as the
primary visual cortex. As the regression line (dashed) indicates, the physiological analogue for
dmax varies somewhat with retinal cccentricity. Mikami, Newsome and Wurtz also studicd
neurons in cortical area MT, which is belicved to be specialized for motion processing. [n Arca
MT, the analogue for dp, 5, not only grows more rapidly with eccentricity, but also reaches
higher values than for V1 ceils at comparable cceentricities. Mikami, Newsome and Wurtz
(1986) have plotted some of Baker and Braddick’s (1985) 1ta on these samne axes (the squares).
The human psychophysical data scem to correspond much more closely to the maximum
displacement for cells in Arca MT than in Arca V1.
Figure 7 about here

Obviously there are problems in relating the performance of single cells to an observer's -
performance on some psychophysical task. For one thing, the observer presumably uses the
signals coming from a very large number of cells. There are usually differences between
stimuli. For instance, the stimulus uscd by Mikami and his assodates made many steps as it
traversed the receptive field. As we shall sce below, psychophysical A, is higher when the

stimu'us takes more than two steps. Nonetheless, it is striking that psychophysically we can
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detect the direction of displacements that are greater than those that elicit directional responses

from any cell in Arca V1. Itis cqually striking that psychophysical performance falls within the

range of displacements processed by Area MT cells. Apparently, a major portion of the

"machinery” for extracting motion information from successive exposures lies beyond Area V1,

that is, beyond the first major direction-selcctive stage in the magnocellular stream (see Chapter

5 in this Volume). -

When directionally-sclective units are probed, their directional selectivity does not depend
on the stimulus passing right across the receptive ficld. Rather, any small region of the field
shows directional responses (sce Barlow & Levick, 1965). In fact, studies such as thase by
Mikami gt al. in macaque cortex (1986), show that the largest displacement that produces a
directional response is normally considerably smaller than the cell’s receptive field. That has
led to the idca that a receptive ficld is made up of many local subunits each of thch is direc-
tionally selective (Emerson, Citron, Vaughn & Klein, 1987). Each subunit can generate a signal
that contributes to the cell’s overall directional response. Yuille and Grzywacz (1988) offered an
explicit computational account of how motion information might be integrated over space.
Their model gives an excellent account of various psychophysical demonstrations that
neighboring regions in the visual field intcract cooperatively to produce an overall sensation of
motion (Chang & Julesz, 1984; Williams, Phillips & Sekuler, 1986).

Under certain conditions, stochastic displays can give rise to a percept of global motion, an
effect that can shed considerable light on the visual system’s strategy for integrating motion
over space. To examine this phenomenon, Williams and Sckuler (1984) developed special
random dot cinematograms in which all dots drew their successive displacements from a
rectangular distribution characterized by some particular directional range. On any frame of the
display, the direction in which any single dot moved was i)independent of its own history of

movements, and ii)independent of the movemcnts of other dots. When the distribution of
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directions covered a broad range of directions ~for example, 270-360 deg—~ the observer saw
only the local, random motions of individual dots. When the distribution of directions covered
a narrower range —for example, 90-180 deg-- the observer continued to see those local random
motions, but now also saw a global, coherent flow in the general direction of the mean of the
distribution.

Williams and Sekuler (1984) measured the probability with which global motion was scen,
as a function of the directional distribution s range. They found that as the distribution changed,
so did the percept ~from random, incaherent motions to global flow, or vice versa. Moreover,
the perceptual change tended to be quite abrupt, making for frequency-of-secing curves that
were quite stecp.

After exploring a number of the parametcrs that determined when stochastic motions
would yield a giobal percept of flow, the obvious challenge was to characterize the system that
might produce such behavior. Williams, Phillips and Sckuler (1986) suspected that
cooperativity might be involved. Since hysteresis, a form of memory, is regarded as a reliable
marker for cooperativity, they set out to determine whether the percept of global flow exhibited
hysteresis.

In their typical experiment, a trial began with a random dot cinematogram that contained
either a narrow- or a broad-distribution of directions. Then, aftcr some random interval, the
distribution changed slowly over successive frames. This change in the direction distribution
caused the percept to change, either from global flow to random noise (when the starting
distribution was narrow), or from random noise to global flow (when the starting distribution
was broad). The dependent measure was the direction-distribution at which the percept

changed from one state to the other.
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The basic finding is simple: the dependent measure varied strongly with the starting state of
the stimulus (and, correlatively, the starting state of the percept). If the initial conditions had
promoted a percept of global flow, the percept switched states at a relatively broad distribution;
if the initial conditions had not promoted a percept of global flow, the percept switched state at
a far narrower distribution. Quantitative estimates of the effect of starting state were obtained
under several different stimulus conditions. After studying several control conditions,
Williams, Phillips and Sekuler (1986) concluded that the percept, once established, did indeed
exhibit a resistance to change —that is, the percept exhibited hysteresis. The results of these
experiments were well fit by a modcl that involved cooperative and competitive interactions
among direction-selective units. A network comprising such interactions decides among
alternative percepts on a "winner-take-all basis” (Feldman & Ballard, 1982).

One should expect that the visual system would combine motion information not just over
space but over time as well. In integration over space, there is one range - within the subunit of
the receptive field — that is related to dyp, ., but there is also a larger range over which there are
interactions among scparate subunits. Analogously, there might be two time constants in the
motion system. One time constant might relate to the maximum interval for a single
displacement. However, if the subject is presented with a sequence of more than two
exposures, information may be integrated over a period much longer than the interval between
a single pair of display frames. Figure 8 illustrates this idea with some data from Snowden and
Braddick (1987). Using random dot cinematograms, dm,, was measured as a function of the
number of successive exposures per trial. Note that as this number increases, dyay increases as
well. As Figure 8 shows, dp,, increascs up to between four and six displacements (sce also
Nakayama & Silverman, 1985). Clearly, the motion system is gaining extra information from
temporal integration over successive displacements. The detector’s basic directional response

requires two exposures within less than 100 msec, but Figure 8 shows that this response is

A2

"




——

= TN

enhanced by temporal integration over at least 300 msec.

The results of Figure 8 show integration over time, but one should not conclude prematurely
that the asymptotic performance is determined by the temporal limits of integration. At least
over the range shown in Figure 8, when the entire train of displacements is speeded up or
slowed down, dpy,5,'s asymptotic number of steps remains constant. The time to reach
asymptote varies between about 100 and 400 mscc, depending on the rate of presentations. Of
course, motion does inevitably involve both time and space: in taking n steps, each of a given
dmax. the stimulus traverses a particular distance.

Figure 8 about here

Figure 9 is taken from Mikami, Newsomc and Wurtz’s (1986} experiment on the relation
between receptive ficld width and d 3 for macaque Arca MT neurons. As mentioned before,
the receptive ficld widths tend to be much larger than dmayx, implying some form of subunit
structure. The graph plots the ratio between field width and dyp,«. Note that this ratio shows a
shallow gradient with cccentricity; between four and scven steps of dmay would fit within one
receptive field. This finding resembles the kind of asymptotic value found by Snowden and
Braddick (1987), suggesting that the limit might be set by the width of the receptive field.

Figure 9 about here

However, further experiments by Snowden (19xx) suggest that the limiting factor may be
neither spatial nor temporal, but simply a constant number of steps. Such a limit might reflect
the effectiveness with which signals can be propagated from one detector to the next, across a
cooperative nctwork. The idea that linked detectors combine information by means of mutual
facilitatory and/or inhibitory interactions can be contrasted with the simpler idea of subunits,
each having an independent dircctional response, whose outputs are summated in the motion

detector. (Of course, such combinations must have limits on its temporal and spatial range, even
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if they are not the major factor in these experiments.)

These resuits imply that in order to understand how neural structures determine
psychophysical performance in motion perception tasks, it will not be sufficient to examine the
performance of an isolated motion detector. Qur perception of motion depends on integrating a
number of local neural responses. Clearly, further psychophysical experiments need to be done
to characterize this integration. For instance, how far can successive steps at different effective
velocities, or in different directions, be integrated? Hopefully, there will also be advances in
physiological knowledge that will clarify the neural basis of this integration and of other factors

that affect dmax-

A. Correspondence challenges and correspondence solutions.

In order to extract apparent motion from complex displays, the visual system somchow
solves a very difficult problern. Among the thousands of possible element-to-element matches,
only one is correct. How does the visual system determinc which parts of successive images
reflect a single object in motion?

Ramachandran and Anstis (1986a) have suggested that early stages of visual processing of
motion uses various heuristics, or rules of thumb, that the human visual system has acquired
through millions of ycars of evolution. These heuristics have been adopted not for mathematical
elegance or aesthetic appeal, but merely because they worked. One can learn much about these
rules of thumb by watching the visual system as it struggles to solve the correspondence
problem.

These rules reflect the fact that in the real world objects move in characteristic, predictable
ways. For example, if one’s arm moves, neighboring parts of the arm tend to move together. Or,
as a football sp-irals through the air, its parts tend to travel gn massc (no picce of the pigskin or

the laces are likely to peel off on its own independent course).
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The visual system seems to make the correct assumption. At a macroscopic level the physical
world is not a chaotic, amorphous mess. The visual system capitalizes on the world’s
predictable physical properties and limits the matches it must consider by dealing only with
matches that would yield perceptions of motion that are plausible in the real, thiree~<dimensional
world. Later on, we will retumn to speculate how this scheme might be implemented. To
examine the notion that the visual system assumes the world has order, Anstis and colleagues
fashioned motion displays that could be interpreted in more than one way and then observed
how this ambiguity was resolved (Anstis and Ramachandran, 1986a; Ramachandran and Anstis,
1986b). The resulting percepts —or interpretations— suggested that the visual system was
making three different but quite sensible assumptions about the real world: 1) inertia — that
moving objects tend to continue moving in the same direction, showing minimal changes in
velocity over time; 2) rigidity - that extended surfaces tend to move all in one picce, showing
minimal changes in velocity over space; and 3) that moving objects tend to cover and uncover
predictable regions of the background.

Assumption One: Inertia. The visual system makes one assumption that may remind you
of Newton’s first law of motion: objects in motion tend to continue their motion along the same
path. (Note the resemblance between this statement and the Gestalt law of good continuation
{Bruce & Green, 1985)). Perceptually, once motion is experienced there is a tendency to continue
to experience it, even after the motion has actually stopped. Wertheimer’s monograph (1912)
offered an intriguing demonstration of this fact. He produced apparent motion by a series of
alternating presentations of two vertical lincs. During the alternations, without warning to the
observer, Wertheimer occluded one, leaving the remaining line to appear at its normal time in
the sequence. Observers continued to sce motion for several "cycles™ after the line had been
occluded. Anstis and Ramachandran (1986b) gave an clegant demonstration of this

phenomenon in the case of rotary inertia. Figure 10 illustrates one arrangement that shows
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inertia in rotary motion. First, consider control measurements, that evaluate motion perception
with no inertia. The display alternates between a pair of crosses that are rotated 45 degrees
relative to one another. These crosses can be thought of as a plus sign and a letter x. When
these two spatially overlapping figures are alternated, the apparent motion they set up is
ambiguous. Rotation is scen, but it can be either clockwise or counterclockwise (anti-clockwise,
if the demonstration is performed in Great Britain). The bottom part of the figux"e illustrates
what happens when an inertia-inducing constraint is added. This constraint is another, tilted, }‘
cross, oriented toward eleven o’clock on the watch face. This constraining cross, in frame 1,
precedes the sequence of the other two crosses. Now the first two prescntations, a tilted cross
followed by a plus sign, produce strong motion in a clockwise direction. Intcrestingly, this
strong apparent motion continues when the third element, the letter x, is presented. The first,
unambiguous jump, imparts a perceptual rotary inertia that converts the previously ambiguous
motion into one that incvitably is scen as clockwise. This may be termed a form of motion bias
(priming).
Figure lb about here

Assumption Two: Rigidity. Another assumption that could limit possible
correspondences is the assumption that objects are rigid; that is, all points on a moving object
are assumed to move in synchrony. Though many interesting objects are not rigid in the strl:ct
sense, most exhibit at least some local rigidity —a tight coupling between the movements of
closely neighboring parts. The tendency for ncighboring components to move in similar ways
lends considerable redundancy to the motions of neighboring elements within image space.
This redundancy would make it economical for the visual - /stem to extract salicnt features,
such as clusters of elements, rather than individual elements, from a complex display and then

search for corresponding features in successive images. This strategy, if it could be
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implemented, would certainly reduce the number of potential matches without increasing
perceptual errors. Take a lcopard lcaping from a branch of one tree to a branch of another.
(Note the resemblance between this statement and the Gestalt law of common fate [Bruce &
Green, 1985].) According to the rigidity assumption, a vicwer who picks out any salient feature
of the leopard, such as its basic shape, and finds the same fcature in a second frame need not
compare every black spot on the animal at moment tg with every single black spot at moment
t1. A highly efficient system might take advantage of the spatial redundancy by attemptirg to
match features on a coarse scale. Consistent with this idca, Ramachandran, Ginsburg and Anstis
(1983) found that the visual system often detects correspondence between regions of similar low
spatial frequencics before it detects more detailed outlines or sharp edges. The same heuristic
might also account for the way in which a cincmatogram’s spatial frequency content influences
dmax (see above).
Assumption Three: Covering and Uncovering . The visual system appears to make a
third assumption, which is a corollary of the other two: a moving object will progressively cover
and uncover portions of a background. ].J. Gibson (1966), among others, has called attention to
the importance of this fact. When an object, which is normally opaque, temporarily occludes a
background, the background still exists; it does not disappear. To sce how the third assumption
affects perception, consider Figure 11. The left pancl of the figure illustrates a display in which a
triangle and a square below it are presented and then are replaced by another square adjacent to
the triangle and directly to its right. As the right pancl suggests, one sces the triangle appear to
move horizontally and to hide behind the obliquely moving square, which now appcars to
occlude a triangle that is not, in fact, being displayed. The visual system seems to assume that
an object continues to exist, even if the system has to fabricate the supporting evidence (Anstis
and Ramachandran, 1985).

Figure 11 about here

YA

P

alh




But consider even more complex stimuli. What stratcgy could the system adopt when
presented with many objects simultaneously in apparent motion? The visual system behaves
economically, perceiving all objects in a field as moving in the same direction, unless there are
unambiguous cues to the contrary.

Figure 12 provides an example of another spatial constraint, one that operates on a more
global scale (Ramachandran and Anstis, 1985). The figure shows nine ambiguous quartets of
dots, with two dots (either black or shaded) from each quartet appearing in each frame. Under
proper conditions, observers report that the dots in each pair sometimes move vertically and
sometimes horizontally, though in opposite directions. The percept fluctuates more or less
randomly. The interesting point is that all the quartcts move in the same dircction at any given
time. If the dots in any one quartct appear to move vertically, the dots in all the quartets do
likewise. Then suddenly they all change step together and move horizontally; the dot quartets
entrain each other. There is a strong tendency towards sceing spatial coherence, or if you like,
uniformity across the field (see also Chapter 10, this volume).

Figure 12 about here

The visual system behaves as though it took advantage of certain rules of thumb about the
properties of objects in the rcal world. Naturally, if this viewpoint is more than an interesting
metaphor, we nced some idca of hcw such behavior is possible. How might such
"assumptions” be implemented, cither in neural hardware or in software? Figure 12 gives some
hint of a reductionistic explanation of this phenomenon. As was noted carlier, Braddick has
shown that when the total excursion of some stimulus occurs in a series of sfnall, successive
displacements, dm,y increases. The result is that one is more likely, than otherwise, to see
motion in a straight line. Among the interesting questions that remain, though, none is more

intriguing than the question of the genesis of these assumptions. Are they represented in
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neurons that are "hard-wired" from birth to implement those assumptions or s&ategies? Ordo
those assumptions become wired into the system as the result of some kind of natural selection
at the neural level, a kind of neural Darwinism (Edclman, 1987; sce Chapter 12, this volume).
Because this process depends upon the viewer’s own experiences with his or her
environment, the resultant neural connections would be likely to reflect the propertics of objects
and motions in that environment. Alternatively, does the perception of motion require some

higher level of cognition? Time —and further rescarch— will tell.

Cortical Mechanisms
A. Initial stages.

While various psychophysical phenomena of motion perception are sdll fresh in mind, let us
consider some of the neuronal mechanisms that might contribute to the psychophysical effects
that have been discussed so far. Basically, in the visual cortex of cat and monkey three types of
cells scem most likely to play major roles in motion perception. Two of these cell types -
direction-selective and velocity-tuncd— scem well-suited to provide estimates of local motion as
opposed to global motion. The third, more recently discovered type, is a motion scgregation or
parallax cell. This type of ccll may be especially relevant to several of the psychophysical effects
described earlier.

When one asks what sort of cells contribute to perceived motion, the first answer that comes
to mind is the direction-selective ccll (Pasternak, 1986, 1987; Pasternak & Leinen, 1986). In fact, a
preponderance of direction-selective cells in one region, such as Arca MT, sugg'csts that the
region is involved in processing motion information (Albright, 1984; Newsome, Wurtz,
Dursteler & Mikami, 1985; Newsome & Parc, 1988). But directional selectivity is not easily
defined. It is not only a matter of having a preferred direction of motion, a direction to which

the coll responds more vigorously than to any other. Nor is it only a matter of directional
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asymmetry, in which the cell responds strongly to one direction and little or not at all to the
opposite direction. Rather, dircctional asymmetry may be characterized by some ratio of
responses to the motion in the optimal direction over responscs to motion in th; opposite
direction. One commonly used formula is

Direction Index = (Rpd - Rnpd)/Rpd *100,
where Rpd is the net response to stimulation in the preferred direction, Rnpd is the net response
to stimulation in the direction opposite the preferred direction, and "net response” signifies the
difference betwecn the response clicited by the stimulus and the mean spontaneous activity of
the cell.

By such an index, cells vary widcly in directional asymmetry. Various rescarchers have
advocated using a high value of this ratio, typically an index of 50, as a cutoff bewtween
direction selective from nonselective cells. However, cells’ indices of direction asymmetry form
a continuous distribution, not a bimodal one.

To make matters cven more complex, for many cells, dircction selectivity depends on the
speed of the moving test target (Orban, Kennedy, & Macs 1981). One can then argue that
statements about any cell’s directional selectivity mus.t be contingent statements, specifying the
velocity for which selectivity has been assessed. For this reason, Orban ¢t al. (1981) introduced
the mean direction index (MDI) which is a weighted average of dircction indices measured at
different velocities, using the response strength at different spceds as weighting factors. Finally,
the dircction selectivity of some cells changes with the the sign of the target’s luminance

contrast (Albus, 1980; Yamane, Maske & Bishop, 1985; Orban, Gulyas, Spileers & Maes, 1987).
For such cells, a bright bar on a dark background may yield a differcnt index of selectivity than
will a dark bar on a bright background. Perhaps the mean of the mean dircctior; indices for light

and dark bars might be a good index of the overail dircction sclectivity of a cortical cell.
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The properties of dircction sclective colls might help account for some of the phenomena of
apparent motion. A cortical cell’s dircction selectivity depends on interactions between distinct
regions within the receptive field. Indeed, in Area 17 of the cat, if one masks the entire receptive
field except for a central strip some 0.3° wide, the mean direction index of cortical cells is
reduced to that of LGN cells. If a moving target is illuminated stroboscopically, direction
selectivity to that target is abolished if the gaps between successive flashes are separated too
much —either in space or in time (Duysens gt al., 1988). This may explain why the short range
motion process in apparent motion operates over short spatial and temporal intervals.

It is important to appreciate that not all direction selective cells are actually involved in
encoding motion of an outside object. Indeed most physiological studies have used a single,
isolated stimulus to measure direction sclectivity, an artificial condition quite different from
those occurring outside the laboratory. Recent results (Orban, Gulyas, & Vogels, 1987; Orban,
Culyas, & Spileers, 1988) demonstrate that in about half the cells in Arcas 17 and 18 of the cat,
direction sclectivity for a foreground stimulus is modificd dramatically by the motion of a
textured background stimulus (sce the solid curve in Figure 13A and the dashed curve in Figure
13C). These cells have been implicated cither in motion scgregation (see below) or in the
extraction of depth from motion (Orban, Gulyas & Vogels, 1987). (Related observations have
been made by von Gr nau and Frost (1983) in cat latcral suprasylvian gyrus and by Allman gt
2].(1985) in Area MT of the owl monkey.) Other cells, for which the direction selectivity does not
depend on background motion, are most likely to encode motion of an object in the world.
Presumably, they could signal the dircction of object motion per s¢, without being strongly
affected by the particular moving background against which the object happened to appear.

Figure 13 about here
Another type ~f ccll that may be important in motion perception is the velogity tuned cell

(Figure 14). Note that here the ccll’s response is a distinctly non-monotonic function of velodity,
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for both light and dark moving bars. Velocity-tuned cells typically respond optimally to some
intermediate, moderate lcvel of stimulus velocity. Orban and collecagues (Orban gt al., 1981;
Duysens gt 3]., 1982) showed that at very high or very low velocities, velocity tuning was absent
in Areas 17, 18, or 19 (Figure 15). The same holds for Area MT of the monkey where many cells
are velocity tuned (Maunsell & Van Esscn, 1983a,b,c).

Figure 14 about here

This observation leads one to expect that velocity discrimination, measured
psychophysically, might also be best at corresponding, moderate stimulus velocitics. Velocity
discrimination measured in humans, cats and monkeys confirm that this is so (Orban ¢t al.,
1984; Vandenbussche gt al., 1986a, 1986b).

In each spccies, the just noticeable difference in velocity is a U-shaped function of reference
velocity. Also note that whereas humans and monkeys give very similar results (minimal just
noticeable differcnces of about 5-7%), cats do more poorly overall (minimal just noticeable
differences of about 50%), although undcr optimal spatiotemporal conditions, they may
discriminate differences in velocity of about 15% (Pasternak, 1987). It is worth noting that these
U-shaped functions remain invariant when measured with random dot patterns rather than
moving bars (DeBruyn & Orban, 1986).

Striking though the analogy is, could the resemblance between psychophysical data and
physiological data be merely coincidental? Of course one can never rule out such a possibility.
However, one can strengthen the argument by exploring other dimensions of analogy. In
particular, one can exploit the fact that velocity tuned cells do not constitute an entirely
homogeneous class. Orban (1985), working in both monkey and cat, has shown that the optimal
stimulus velocity for vclocity-tuned cells varies with receptive ficld eccentricity. Figure 15

groups cells into three different ranges of eccentricity, 0-5 deg, 5-15 deg, and greater than 15
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deg. Note that the optimal velocity increascs with retinal cccentricity. One would épxt
velocity discrimination to show a similar dependence on eccentricity. Orban gt 3l. (1985) found,
with human observers, that indeed this is the case.
Figure 15 about here

To push the analogy even further, note that velocity-tuned cells lose their tuning when they
are tested with slow (2-15 Hz) stroboscopic motion (Figure 16). Human observers show a
comparable disruption of velocity discrimination when they, too, are tested with stroboscopic
motion (Figure 17). A striking example of this is provided by MacKay’s (1958) di-placcment
illusior.

Figures 16 and 17 about here
In contrast to direction- and velocity-tuned cells there is a third group of cclls that
ordinarily shows no selectivity for direction, but does show sclectivity under special conditions.
Recognizing their potential perceptual role, Orban and Gulyas (1988) have called such cells
"motion segregation” cells. Although motion segregation cells fall into several distinct classes
(Orban, Gulyas, & Vogels, 1987), only one will be presented here, the so-called "anti-phase” cell.
When anti-phase cclls are tested with a moving bar in the conventional manner —a single

moving stimulus with no background movement— they show no direction sele.cﬁvity. At first
glance, then, one might falsely think that these cells play no role in motion perception.
However, the cell’s response does change markedly when a moving background is introduced.
In fact, in the presence of a background of moving, random noise, these cells become strongly
directionally sclective and this selectivity is quite complex (Hammond & Smith, 1982, 1984;
Hammond, Ahmed, & Smith, 1986).

Whatever the direction of the moving background, and whatever the direction of a moving
bar superimposed on that background, the cells respond most strongly when the bar moves in a

direction opposite to the background motion (Figure 18). Becausc they are selective for target
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motion in a direction opposite to background motion, these cells can be labelled "anti-phase
cells” (Orban, Gulyas & Vogels, 1987).
Figure 18 about here

Anti-phase cells fall into two classes. In Arca 17 of the cat (Figure 18), and in Area V1 of the
monkey, anti-phase cells exhibit selectivity only along one particular axis of movement. The
other class of anti-phase ccll, found in Arca V2 of the monkey, exhibits selcctivity regardless of
the axis of motion. So long as foreground and background motions occur in opposite directions,
it does not matter much what either direction is. This second class of anti-phase cells resembles
the opposed-motion cells found by Frost and Nakayama in the pigeon tectum (1983).

What perceptual role might be played by motion segregation cells, including anti-phase
cells? They all share a potential for signalling the presence of a difference, in speed or direction,
between target and background motion. Commonly, such differences arise when target and
background lie in diffcrent depth planes. Moving objects occupying different apparent depth
plancs and travelling in diffcrent directions sct up shearing patterns of optical flow (Nakayama,
1985). Under some conditions, such shearing gives rise to strong kinctic contours, separating
motion in one depth plane from motion in another. The perceptual conditions needed to see
these kinetic contours have been studied by Koenderink and van Doorn (1978), among others.
Those studies add support to the idca that direction segregation cells, rather than direction-
selective or velocity-tuned cells, are involved in the creation of kinetic contours (Orban &
Guiyas, 1988). For instance, if one measures the difference in direction of travel for two adjacent
random dot cinematograms neccssary for producing a kinetic contour, one ﬁn&s that the
direction difference has to approach 30 degrees, a value some 20 times higher than the
difference threshold for direction. Interestingly, such large critical differences in direction are
precisely what one would expect if motion-segregation cells, not direction-selective cells, played

a key role in kinetic contours. Thirty degrees is about the smallest difference between
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foreground and background motions that clicits a strong response from motion-scgregation
cells.

The lesson, then, is that motion involves a great many diffcrent features, and that the
nervous systern makes use of several different cell classes to produce those features. Direction

selectivity, though surely important, is not the alpha and omega of motion perception.

B. Area MT and the aperture problem.

One of the major problems of motion analysis is the way in which local motion signals are
integrated to provide information about the motion of complex objects ar. * patterns. This class
of problem was termed the "aperture problem” because it is readily made explicit when
considering measurements of motion made through finite apertures (Movshon, Adelson, Gizzi
and Newsome, 1986). Figure 19a illustratcs the problem by considering the motion of two
diamond figures, one moving down and onc moving to the right.

Figure 19 about here

Although the global motion of these two figures is quite different, a local measurement of
motion made in the circles drawn on the lower right-hand border of each diamond would yicld
the same value in each casc. The local motion of a border is usually seen as being orthagonal to
the border, as shown by the arrows linked to the circular apertures of measurement. This
situation is formalized in the lower diagram of Figurc 19a, a graph in which the angle of a
vector represents direction of motion and its length represents speed. The local measurement of
motion made in each of the apertures is not sufficient to define the motion of the whole object:
there is an ambiguity concerning the motion measured locally. The true motion of the border
consists of the measurable component grthogonal to the border and some unmeasurable (and

therefore locally unknown) component parallel to the border (dashed line in Fig. 19). The
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measurable component is represented on the figure by the oblique vector directed down and to
the right, and the unmeasurable component is represented by the dashed line orthogonal to it.
The motion of the local border thus does not specify object motion completely, but imposes the
constraint that the motion of the object containing the border must fall somewhere along the
dashed line. The true motions in the two cases illustrated (the vertical and horizontal vectors)
both correspond to different points along this “line of constraints.”

The existence of these constraints makes possible a simple formal solution to this class of
aperture problems, if measurements made over two or more contours are combined (Adclson &
Movshon, 1982). The form of this solution is shown in Figure 19b. Mcasurements made along
the upper right border of the figure (“edge 1*) provide one line of constraints; measurements
made along the lower right border ("edge 2") provide a second line of constraints; the
intersection of these two lines (“object”) is the only motion consistent with the two constraints,
and must thercfore yicld the motion of the object.

The neural implementation of this modcl requires that some set of directionally-selective
neurons integrates signals from several local measurements of motion. Because of the larger
spatial scale of Area MT receptive fields and the fact that Arca MT receives directionally
selective inputs from Arcas V1 and V2, it is natural to suppose that MT might be the site of this
integration. It tums out that this is indced the case. Arca MT also contains two distinct kinds of
directionally sclective neurons. Component direction sclective neurons, like ncurons in Area
V1, provide signals about the local motions of individual contours or orientations. Pattern
direction selective neurons, found only in Arca MT, carry more fully integrated information
about motion that emerges from the combination of signals about motion from several different
contours or orientations (Movshon gt 3l, 1986). These neurons provide motion signals that are
invariant with the orientation of moving contours and represent a degree of abstraction of

motion information not seen at lower levels of the visual pathway.
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Our knowledge of ihe {unctional characteristics of neurons in the portions of the motion
pathway beyond &ea MT is rclatively sketchy. Even the anatomy is not yet fully understood,
and it is likely that areas such as Arcas MST (Mcdial Superior Temporal) , 7a and VIP (Ventral
Intraparietal) will ultimately prove to have complex functions related to several different
aspects of motion processing. For example, some neurons in Areas MST and 7a respond to
complex patterns of motion but not to the simple rigid motion of objects across the visual field.
Motter and Mountcastle (1981) have shown a pattern of directional responsiveness in parietal
neurons that lends itself to an analysis of optic flow produced by locomotion through the
environment. More recently, Saito, et al. (1986) reported several complex patterns of response
in MST neurons, including preferences for rotations both in the fronto-parallel plane and in
depth, as well as for optic flow patterns of the kind suggested by Motter and Mountcastle. Still
other data suggest a role for the higher arcas of the motion pathway in the control of smooth
pursuit eye movements (sce, for example, Lisberger, Morris & Tychsen, 1987). Morcover,
signals rclated to motion must also be involved in such basic perceptual tasks as segmentation
of complex images (sce Nakayama, 1935; DcYoe & van Essen, 1988). Further analyses of this
complex and important ncural system will surely yicld new insights into the brain’s processing

of visual images.

Motion Perception by a Moving Observer
Up to this point, the chapter has emphasized the dependence of motion perception upon
afferont signals. Although such an emphasis is justified, it neglects offeront influences on the
perception of object motion. Such influences are clearly important. For example, motion
perception is strongly influenced by factors such as concurrent self-motion, eye movements or

oculomotor disorders (Brandt & Dicterich, 1988). Although the physiological underpinnings of
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these effects are not yet understood (Galletti, et al. 1987), they do represent important boundary
conditions for the entire field of study.

Under normal everyday conditions, an observer moves frecly about within his or her
environment. As a result, motion signals arising from the retina subserves two quite different
tasks: the observer must control his or her own motion and, at the same time, must also
perceive the motion of objects. These two tasks can sometimes be in conflict. For example,
while one drives down the road it is difficult to simultaneously perceive movement of rcadside
tree tops. This fortuitous discovery prompted a series of experiments on object motion
perception in the presence of sclf-motion perception or eye movements. Concern for highway
safety lends added importance to the possibility that sclf-motion and object-motion interact. To
take but one example, accurate perception of changes in headway, the distance between cars, is
essential to safe driving. If a driver’s ability to perccive object motion was impaired by
movement of his or her own car, the driver would be much disadvantaged when the situation
demanded rapid response to changes in headway.

Mean response times to change in hcadway, the inter-car separation, have been taken under
actual road conditions and compared with measurements made in the laboratory by non-
moving observers. Laboratory tests simulated a car’s rear ond, using an ellipse whose size was
varied electronically. Mcasurements were made with two different reference headways, 20 m
(lightly stippled bars) and 40 m (darkly stippled bars). As Figure 20 shows, detection of
headway change is much more difficult under actual road conditions (A) than under static
laboratory conditions (B and C). The figure also shows that it makes no différrmce whether the
simulation involves an cllipse (B) or 2 horizontal bar (C) that changes in size. Compared to
either case, detection of change is much better than on the road. These results suggoest that
extrapolations from static, laboratory conditions to predictions of detection cn the roadway may

undcrestimate roadway reaction times by as much as several hundred milliscconds (Probst,
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Krafczyk, Brandt, & Wist 1984; Probst, Krafczyk & Brandt, 1987).
Figure 20 about here
The next experiment deals with the perception of frontoparallel, object motion while the
observer’s eyes, head or trunk are also in motion. Figure 21 shows that the threshold for
detection of object motion increases during concurrent head motion and fixation of the moving
target. Data are shown for several diffcrent rates of oscillation about the vertical axis, ranging
from 0.04 to 0.25 Hz. The oscillations had an amplitude of plus and minus 20°. Notice also that
similar results can be obtained without cye or hcad movement; neck stimulation produced by
rotating the trunk relative to the head can also clevate the threshold for object motion (Brandt,
1982; Probst gt al., 1986).
Figure 21 about here
Finally, consider the perceptual consequences of certain oculo-motor disorders. The patients
whose perceptions will be described had an acquired palsy of the oculomotor, trochlcar, or
abducens nerve (that is, the third, fourth or sixth cranial nerves). All these patients had
difficultics in object motion perception (Brandt & Dicterich, 1986; Dicterich & Brandt, 1987). For
example, Figure 22 shows motion perception in a patient’s affected and unaffected eyes. The
figure also shows the performance of age-matched control obscrvers. The dependent variable is
the time required to detect a moving object. Generally, paresis scems to be associated with a
suppression of motion perception.
Figure 22 about here
Though suppression of perception of object motion is decidedly abnormal in paticnts with
eye muscle paresis, such suppression confers certain benefits. The perceptual suppression
reduces or eliminates the oscillopsia (illusory, perceptual jitter) that would otherwise

accompany hcad movements. This is partly confirmed by the fact that the perceived amplitude
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of oscillopsia in these patients is always smalier than the net retinal slip. Figure 23 shows that
the same holds for patients with an acquired down-beating nystagmus (quick involuntary
vertical oscillations of the eye; usually a sign of central nervous system dysfunction) or
congenital nystagmus (Dieterich & Brandt, 1987).

Figure 23 about here

Conclusions and Speculations

This chapter has tried to reinforce the notion that the field of motion perception is not
completely unified. The diversity of motion becomes particularly clcar when one considers the
physiological processing of motion information. Diffcrent aspects of motion may be processed,
or made explicit, at different stages of the magnocellular-strcam. As DeYoe & van Essen (1988)
emphasize, "motion cues can be used in a diverse range of computational tasks, only some of
which are directly related to the perception of objeét motions per se.” Thus, although the
magnocellular-stream has often been linked to motion perception, that link —or those links-
may turn out to be quite complex and varied (Van Essen & Maunscll, 1983).

For example, supposc we assert that some particular psychophysical aspect of motion
processing emerges at one stage of the magnoccilular stream. This asscrtion assumcs what
Teller (1984) terms “transparency,” the assumption that subsequent stages of the system do
nothing to undo this emergent achievement. In other words, those subsequent stages must be
transparent. The hetcrogencity of ncural properties at any one stage of the magnocellular—
stream presents quite a different challenge. Many people have recorded from cortical regions
that may be invoived in motion processing. Nearly every one of those researchers (g,g, Orban,
1986) has commented on the extraordinary cell-to-cell variability in directional selectivity.
Because some of the cells at one stage in the magnoccellular-strcam have properties that parallcl

human psychophysics in some interesting way, one might be tempted to link psychopt, uics to




—sita wEv W @ GER S

the behavior of such cells. However, this fails to account for what the remaining cells in the arca
are doing, or are not doing. Can we explain how the system filters out those responses? Or do
those responses act as a kind of noisc?

Researchers interested in motion perception have recently begun to explore these questions.
For example, Newsome and Wurtz (1988) used a neurotoxin, ibotenic acid, to create a localized,
chemical lesion in Area MT of the monkey. Such lesions produced large, temporary losses in
the ability to initiate smooth pursuit eye movements. There is an even more dramatic,
hypothetical experiment in which one might ask what everyday vision would be like if one did
not have Area MT. This question is interesting, because of a recent clinical report of a patient
who purportedly had lost the tissue of Arca MT, and neighboring areas (Zihl, von Cramon, &
Mai 1983). This patient was extraordinarily impaired on many different tests of movement
perception, particularly tests that involved moderate and faster motions (as opéoscd to very
slow motion). Onc might assume then, that loss of Arca MT would impair motion perception in
a similar manner as the brain lesion impaired performance in this patient. Yet, if a macaque
monkey’s Area MT is removed bilaterally and in toto, the monkey has no trouble moving
around or even responding to objects such as pecopie who move toward the monkey or near it
(A. Cowey, unpublished observations).

One possibility is that those signals upon which we base motion perception come through
Arca MT ~when Area MT is available. Howcever, various studics show that if Arca MT is
destroyed, a relatively short period in which motion perception is severcly impaired is followed
by a rapid recovery of function. Unfortunatcly, the patient described by Zihl, von Cramon and
Mai (1983) never expericnced anything like the recovery that the mor.\kcys do, perhaps because

the patient’'s damage was more cxtensive.
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To return to the first example given at the beginning of the chapter: Exner’s demonstration 1
that motion is not merely a derivative from separate analyses of time and space. This
demonstration notwithstanding, it is entircly possible that some everyday problems of motion i
perception could be solved by analyzing where things arc and when they are there, without

actually making the motion signal explicit. In other words, target motion does not in and of ‘

itself guarantee that the target is processed by a spedialized motion-processing system. For

example, when a target moves extremely slowly, does perception of that target necessarily

i
]
{
t‘ &
depend upon the special "machinery” normally involved with motion perception? A major ! 4
{
challenge for future rescarch is learning to define the conditions under which Exner was right. }
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Figure Captions

Figure 1. Basic scheme of Reichardt’s motion detector. Pancl A: Signals from two
photoreceptors (shaded rectangles) are sent to unit M where the signals arriving at various
instants are multiplied. The signal from the left receptor reaches the multiplier after some
delay, 4, relative to the signal from the right receptor. As a result, the multiplier unit responds
well to a pattern moving in the direction of the arrow. A stimulus would be particularly
effective if it first stimulated the left receptor and then, with delay 4, stimulated the right
receptor. Under these conditions, the product of the two signals would be large, as would be the
output of unit M. Panel B: A sccond group of photoreceptors and associated multiplicr unit.
The position of the delay, 4, makes this group respond poorly or not at all to rightward motion.
Its preferred direction of motion, shown by the arrow, is leftward. Panct C: A more complete
Reichardt unit, with two pairs of receptors, multiplicr units and delays. The left multiplier unit
would respond wcll to a pattern that travcls across the rctina from left to right (with
appropriate velocity); the right multiplier would do the same for a pattern travelling from right
to left (again, with appropriate velocity). A final, subtraction unit, not shown, would convert

the difference between the two M units’ outputs into a directional response.

Figure 2. Each pancl shows three frames of a simple random dot cinematogram. Seme dots
have been shifted from the first frame (top) to the sccond frame (middle) and then to the third
frame (bottom). If the frames were presented as a random dot cincmatogram, the shifted dots
would immediately manifest themselves in apparent movement. In the left pancl, some effort is
required to identify the shifted dots, in still frames. In the right pancl, the three frames of the

cinematogram are shown with the shifted dots highlighted for case of identification.
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Figure 3. Construction of a random-dot cinematogram. Two patterns of random dots are
presented in rapid succession: a typical row from the first and second pattern is shown. Ina
random-dot cincmatogram of the kind shown, only the dots within a central region undergo a
coherent displacement, and the subject is asked to report the shape (vertical or horizontal) of
this region. An alternative method is to displace all the dots in the pattern, requiring the subject

to report the direction of motion. (From Braddick, 1974).

Figure 4. Variation of dppy5x with eccentricity, e, in degrees. The display consisted of dots
displaced upwards or downwards within two vertical strips. The width and length of the strips
are scaled as ¢ changes so that the width always cqual to ¢/3 and length always equals 2e.
Moreover, the outer edges of the vertical strips are maintained at distance ¢ on cither side of the

fixation point.(After Baker & Braddick, 1985)

Figure 5. Dircctional judgments for displacements in narrowband (0.5 octave) spatially
filtered random dot cinematograms. The three curves are data from patterns whose center ’
spatial frequencies are in the ratio 1:2:4. Displacements are plotted on the x-axis as rmultiples of
the period of the center frequency for cach pattern. dpp,y is taken as the displacement for which ’
the error rate (y-axis) reaches 20% on the first rising part of the curve. The crror rate exceeds t
50% when the displacement size is between 25 and 50% the period of the pattern (From Cleary,

1988)

Figure 6. dn,, as a function of the interval (IS1.) between dot pattern cxposures, for three
different eccentricities with each of two subjects. For ISI values higher than the rightmost point

of each curve, dircction of motion could not be reported for any size displacoment, so dmax can
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be taken as zero. Each pattern was exposed for 60 msec. (From Baker & Braddick, 1985.)

Figure 7. Maximum displacement for directional response in macaque cortical neurons.
Triangles and dashed regression line: cells in Area V1. Circles and solid regression line: cells in
Area MT. The solid squares show human psychophysical data for comparison, taken from the

results illustrated in Figure 4. (From Mikami, Newsome & Wurtz, 1986).

Figure 8. Increase of dyy5x With increasing number of displacernents in a sequence: dpyax
as plotted refers to the size of cach individual displacement in the sequence. The different
symbols refer to diffcrent rates of presentation: the value given in the legend is the stimulus
onsct asynchrony, i.c., the time between onsct of successive pattern exposurcs. (From Snowden

& Braddick, 1987.)

Figure 9. Ratio of receptive field (RF) width to maximum displacement for directional
response, for neurons in macaque Area MT. The plotted regression line indicates the shallow
increase of this ratio with receptive ficld eccentricity. (From Mikami, Newsome, & Wurtz,

1986.)

Figure 10. An arrangement for demonstrating rotary inertia. The top row illustrates the
two-frame sequence in a control condition. The display alternates between two, spatially-
overlapping crosses that are rotated 45 degrees relative to one another. The resulting apparent
motion is ambiguous, rotation is perceived cither clockwise or counterclockwise. The bottom
row illustrates a three-frame sequence designed to show inertia. Note that a new, third cross
has been added before the original sequence. The relative orientations of the first and second

targets produce strong clockwise motion. This strong motion persists when the third clement is
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presented and the sequence is repeated.

Figure 11. A: Display whose first frame comprises a triangle and a square, and whose
second frame comprises just a single square located adjacent to the position previously
occupied by the triangle. B: Diagram of the percept produced by the display. The square
appears to move obliquely upward and to the right; the triangle appears to move horizontally,

ultimately being occluded by the square.

Figure 12. Lower pancl: a quartet of discs that produces a randomly fluctuating percept.
When the pair of lighter discs (labelled "1") is presented in alternation with the pair of darker
discs (labelled "2") the percept varies randomly. The discs will scem to move either up and
down or left and right (as indicated by the arrows). Upper pancl: when many quartets are
presented in an array, the random fluctuations of individual quartets scem to be synchronized:

at one time all scem to move up and down, at another time all scem to move left and right.

Figure 13. Responses of cortical cells (cat Area 17) to opposite direction of bar motion as a
function of texture motion. The texture was cither stationary (0), or moved in the left or right
direction, at the same speed as the bar (sa), four times slower (sl) or four times faster (fa). The
dotted horizontal lines indicate the significance level; an asterisk indicates a response in the
preferred direction that is significantly differont from the responses to that direction in the
control condition (texture stationary). The ncuron in A remains dircctio;n sclective for all
texture motion conditions; the neuron in B loses direction selectivity when the texture moves in

phase with the bar. From Orban, Gulyas & Vogels (1987).
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Figure 14. Responses of a velocity tuned cell (cat Arca 18) to light and dark bars moving in
a preferred direction (to the right) or in a non-preferred direction (to the left). The cell is tuned
to the same speed (9.58/scc) for light and dark bars. For both bars, the cell is not direction
selective at 18/sec, at slow and high speeds, but becomes completely direction selective at

medium speed. (From Gulyas, Lagac & Orban, unpublished).

Figure 15. Percentage of cells plotted as a function of optimal velocity for cells in Areas 17,
18 and 19 of the cat (A) and of Area MT cells with strong velocity tuning in the macaque (B).
Distributions are plotted for 3 ranges of eccentricities (as indicated on the left of the histograms).
The third range of eccentricity shown at the bottom extended up to 358 in the cat and up to 258
in the monkey. The data in B arc plotted from Maunsell & Van Essen (1983b). From Orban

(1985).

Figure 16. Three dimensional plots of response rate in the preferred direction as a function
of apparent-velocity and strobe rate of a cat Arca 17 velocity tuned cell. The dashed parts of the
velocity-response curves indicate responses below the significance level. Horizontal thin lines

indicate mean spontancous activity. From Cremicux, Orban amd Duysens (1984).

Figure 17. Just noticcable differences in perceived velocity expressed as Weber fractions
(Awvw) and plotted against stimulus velocity (w). Data are averages from two human subjects.
Light bar continuously illuminated (filled circles), light bar of low luminance (reduced 10 fold)
stroboscopically illuminated at 100 Hz (crosses), and light bar of high luminance
stroboscopically illuminated at 10 Hz (circles). The loss in velocity discrimination at 10 Hz is

not due to a reduction in total cnergy. (DeBruyn & Orban, unpublished).
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Figure 18. Post-stimulus time histograms (PSTHSs) represcnting the average response
(n=20) to a light bar moving horizohtally over the texture (A), to the same bar moving in an
opposite direction over the texture (B), and to the texture moving on its own (C). This cell was
recorded from layer 6 in Area 17 of the cat and its receptive field was centered 3.48 from
fixation. Each row of PSTHSs corresponds to a background condition indicated by a number
between 1 and 7. Conditions 1 to 3 correspond to texture motion to the left, condition 4
corresponds to a stationary texture, and conditions 5 to 7 to the texture moving to the right. In
conditions 2 and 6, the texture moves at the same speed as the bar (2.28/5); in conditions 3 and
5, slower than the bar (0.58/s), and in conditions 1 and 7, faster than the bar (8.88/s). From

Orban, Gulyas & Vogels (1987).

\

Figure 19. The aperture problem. A. Two diamonds, one moving downward and one
moving to the right, showing that locally measured motions (circles) do not unambiguously
reflect the overall motions of objects. B. One formal solution to the aperture problem based on
using the intcrsection of the constraints set up by local measurcments to resolve their

ambiguity.

Figure 20. Object-motion perception under actual road and simulated conditions. Mean
response times were dctermined for the perception of changes in hcadway at distances of 20 m
(lightly stippled bars) and 40 m (darkly stippled bars) under actual conditions (A) and
simulated conditions without concurrent self-motion (B and C). In measurements for actual
road conditions, the subject was in a moving car. An approximation of the perceptually

effective area of the rear of the lcading car was simulated by an electronically-generated cllipse
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of equivalent rctinal size. Headway changes were simulated by adjusting the retinal ellipse
area. The times to detect changes in hecadway were significantly higher for the actual road
condition. Under static conditions in the laboratory there was no difference bet.wecn the
detection of a gradual change in area of the ellipse (B) and a horizontal bar with the same but

one-dimensional movement (C). (After Probst, Krafczyk, Brandt, & Wist 1984).

Figure 21, Object-motion perception with head or trunk oscillations. Mean response times
(in msec) plotted as a function of oscillation. Target speed was 5 deg/sce. There were three
modes of simultancous body-motion. The target was fixated during horizontal head oscillation
with vestibular-ocular reflex (VOR) (A), or with fixation suppressd (B), or with the head fixed
by the helmet and pure cervical stimulation provided by trunk oscillations (C). Abscissa shows
different frequencies of oscillation. Response time to detect object-motion increases with

increasing frequency of cither head or trunk oscillations.

Figure 22. Response times (means and standard deviations) required to detect horizontal
object motion as a function of subject age. The stimulus moved at a constant angular velocity of
24 min/sec. The shaded arcas represent results from a control group, 60 neurological patients
without ocular motor disturbances (n=10 for cach decade from 10 to 70 years). Response times
are shortest at about 20 years of age with increasing mean values and standard deviations in the
elderly. For comparison, the data from 27 patients with acquired extraocular eye muscle
pareses are shown. These paticnts exhibit longer response times for monocular vision with the
affeziod eye (filled circles) as well as the normal eye (open circles). Impairment of motion

perception is more pronounced for the affccted eye.
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Figure 23. Object-motion perception as a function of the eccentricity of horizontal gaze in
patients with congenital nystagmus and acquired downbcat nystagmus. Thresholds for
detection of object-motion (24 min/sec; means and standard deviations) as a function of the
eccentricity of horizontal gaze in patients suffering from congenital nystagmus and acquired
downbeat nystagmus as compared to normals. Thresholds are indicated, on the left ordinate,
as AT (exposure time in seconds) or, on the right ordinate, as DS (displacement of stimulus in
min of arc). Normals first show only a slight increase in thresholds with eccentric gaze and then
show a more pronounced increase on latcral gaze of 40 dcg_. Howcver, whether the ocular
oscillation is congenital or acquired, the patients’ thresholds are significantly raised. Thereisa

large increase in threshold for directions of gaze beyond 20 deg. As a result the amplitude of

the nystagmus is increased.
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